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Classification

The goal of classification is to leverage patterns in natural and social processes
to conjecture about uncertain outcomes. An outcome may be uncertain because it
lies in the future. This is the case when we try to predict whether a loan applicant
will pay back a loan by looking at various characteristics such as credit history and
income. Classification also applies to situations where the outcome has already
occurred, but we are unsure about it. For example, we might try to classify whether
financial fraud has occurred by looking at financial transactions.

What makes classification possible is the existence of patterns that connect
the outcome of interest in a population to pieces of information that we can
observe. Classification is specific to a population and the patterns prevalent in
the population. Risky loan applicants might have a track record of high credit
utilization. Financial fraud often coincides with irregularities in the distribution of
digits in financial statements. These patterns might exist in some contexts but not
others. As a result, the degree to which classification works varies.

We formalize classification in two steps. The first is to represent a population
as a probability distribution. While often taken for granted in quantitative work
today, the act of representing a dynamic population of individuals as a probability
distribution is a significant shift in perspective. The second step is to apply statistics,
specifically statistical decision theory, to the probability distribution that represents
the population. Statistical decision theory formalizes the classification objective,
allowing us to talk about the quality of different classifiers.

The statistical decision-theoretic treatment of classification forms the founda-
tion of supervised machine learning. Supervised learning makes classification
algorithmic in how it provides heuristics to turn samples from a population into
good classification rules.

Modeling populations as probability distributions

One of the earliest applications of probability to the study of human populations
is Halley’s life table from 1693. Halley tabulated births and deaths in a small
town in order to estimate life expectancy in the population. Estimates of life
expectancy, then as novel as probability theory itself, found use in accurately
pricing investments that paid an amount of money annually for the remainder of a
person’s life.

For centuries that followed, the use of probability to model human populations,
however, remained contentious both scientifically and politically.1, 2, 3 Among the
first to apply statistics to the social sciences was the 19th astronomer and sociologist
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Figure 1: Halley’s life table (1693)

Adolphe Quetelet. In a scientific program he called “social physics”, Quetelet
sought to demonstrate the existence of statistical laws in human populations. He
introduced the concept of the “average man” characterized by the mean values of
measured variables, such as height, that followed a normal distribution. As much
a descriptive as a normative proposal, Quetelet regarded averages as an ideal to be
pursued. Among others, his work influenced Francis Galton in the development of
eugenics.

The success of statistics throughout the 20th century cemented in the use of
probability to model human populations. Few raise an eyebrow today if we talk
about a survey as sampling responses from a distribution. It seems obvious now
that we’d like to estimate parameters such as mean and standard deviation from
distributions of incomes, household sizes, or other such attributes. Statistics is so
deeply embedded in the social sciences that we rarely revisit the premise that we
can represent a human population as a probability distribution.

The differences between a human population and a distribution are stark.
Human populations change over time, sometimes rapidly, due to different actions,
mechanisms, and interactions among individuals. A distribution, in contrast, can
be thought of as a static array where rows correspond to individuals and columns
correspond to measured covariates of an individual. The mathematical abstraction
for such an array is a set of nonnegative numbers, called probabilities, that sum up
to 1 and give us for each row the relative weight of this setting of covariates in
the population. To sample from such a distribution corresponds to picking one
of the rows in the table at random in proportion to its weight. We can repeat this
process without change or deterioration. In this view, the distribution is immutable.
Nothing we do can change the population.

Much of statistics deals with samples and the question how we can relate
quantities computed on a sample, such as the sample average, to corresponding
parameters of a distribution, such as the population mean. The focus in our
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chapter is different. We’ll use statistics to talk about properties of populations as
distributions and by extension classification rules applied to a population. While
sampling introduces many additional issues, the questions we raise in this chapter
come out most clearly at the population level.

Formalizing classification

The goal of classification is to determine a plausible value for an unknown target Y
given observed covariates X. Typically, the covariates are represented as an an array
of continuous or discrete variables, while the target is discrete, often binary, value.
Formally, the covariates X and target Y are jointly distributed random variables.
This means that there is one probability distribution over pairs of values (x, y) that
the random variables (X, Y) might take on. This probability distribution models a
population of instances of the classification problem. In most of our examples, we
think of each instance as the covariates and target of one individual.

At the time of classification, the value of the target variable is not known to
us, but we observe the covariates X and make a guess Ŷ = f (X) based on what
we observed. The function f that maps our covariates into our guess Ŷ is called
a classifier, or predictor. The output of the classifier is called label or prediction.
Throughout this chapter we are primarily interested with the random variable Ŷ
and how it relates to other random variables. The function that defines this random
variables is secondary. For this reason, we stretch the terminology slightly and
refer to Ŷ itself as the classifier.

Implicit in this formal setup of classification is a major assumption. Whatever
we do on the basis of the covariates X cannot influence the outcome Y. After
all, our distribution assigns a fixed weight to each pair (x, y). In particular, our
prediction Ŷ cannot influence the outcome Y. This assumption is often violated
when predictions motivate actions that influence the outcome. For example, the
prediction that a student is at risk of dropout, might be followed with educational
interventions that make dropout less likely.

To be able to choose a classifier out of many possibilities, we need to formalize
what makes a classifier good. This question often does not have a fully satisfying
answer, but statistical decision theory provides criteria that can help highlight
different qualities of a classifier that can inform our choice.

Perhaps the most well known property of a classifier Ŷ is its classification
accuracy, or accuracy for short, defined as P{Y = Ŷ}, the probability of correctly
predicting the target variable. We define classification error as P{Y 6= Ŷ}. Accuracy
is easy to define, but misses some important aspects when evaluating a classifier.
A classifier that always predicts no traffic fatality in the next year might have high
accuracy on any given individual, simply because fatal accidents are unlikely.
However, it’s a constant function that has no value in assessing the risk of a traffic
fatality.

Other decision-theoretic criteria highlight different aspects of a classifier. We
can define the most common ones by considering the conditional probability
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P{event | condition} for various different settings.

Table 1: Common classification criteria

Event Condition Resulting notion (P{event | condition})

Ŷ = 1 Y = 1 True positive rate, recall
Ŷ = 0 Y = 1 False negative rate
Ŷ = 1 Y = 0 False positive rate
Ŷ = 0 Y = 0 True negative rate

The true positive rate corresponds to the frequency with which the classifier
correctly assigns a positive label when the outcome is positive. We call this a
true positive. The other terms false positive, false negative, and true negative derive
analogously from the respective definitions. It is not important to memorize all
these terms. They do, however, come up regularly in the classification settings.

Another family of classification criteria arises from swapping event and condi-
tion. We’ll only highlight two of the four possible notions.

Table 2: Additional classification criteria

Event Condition Resulting notion (P{event | condition})

Y = 1 Ŷ = 1 Positive predictive value, precision
Y = 0 Ŷ = 0 Negative predictive value

Optimal classification

Suppose we assign a quantified cost (or reward) to each of the four possible
classification outcomes, true positive, false positive, true negative, false negative.
The problem of optimal classification is to find a classifier that minimizes cost
in expectation over a population. We can write the cost as a real number `(ŷ, y),
called loss, that we experience when we classify a target value y with a label ŷ. An
optimal classifier is any classifier that minimizes the expected loss:

E[`(Ŷ, Y)]

This objective is called classification risk and risk minimization refers to the opti-
mization problem of finding a classifier that minimizes risk.

As an example, choose the losses `(0, 1) = `(1, 0) = 1 and `(1, 1) = `(0, 0) = 0.
For this choice of loss function, the optimal classifier is the one that minimizes
classification error. The resulting optimal classifier has an intuitive solution.

Fact 1. The optimal predictor minimizing classification error satisfies

Ŷ = f (X) , where f (x) =

{
1 if P{Y = 1 | X = x} > 1/2
0 otherwise.
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The optimal classifier checks if the propensity of positive outcomes given the
observed covariates X is greater than 1/2. If so, it makes the guess that the outcome
is 1. Otherwise, it guesses that the outcome is 0. The optimal predictor above is
specific to classification error. If our loss function were different, the threshold 1/2
in the definition above would need to change. This makes intuitive sense. If our
cost for false positives was much higher than our cost for false negatives, we’d
better err on the side of not declaring a positive.

The optimal predictor is a theoretical construction that we may not be able to
build from data. For example, when the vector of covariates X is high-dimensional,
a finite sample is likely going to miss out on some settings X = x that the covariates
might take on. In this case, it’s not clear how to get at the probability P{Y = 1 |
X = x}. There is a vast technical repertoire in statistics and machine learning for
finding good predictors from finite samples. Throughout this chapter we focus on
problems that persist even if we had access to the optimal predictor for a given
population.

Risk scores

The optimal classifier we just saw has an important property. We were able to write
it as a threshold applied to the function

r(x) = P{Y = 1 | X = x} = E[Y | X = x] .

This function is an example of a risk score. Statistical decision theory tells us that
optimal classifiers can generally be written as a threshold applied to this risk score.
The risk score we see here is a particularly important and natural one. We can
think of it as taking the available evidence X = x and calculating the expected
outcome given the observed information. This is called the posterior probability
of the outcome Y given X. In an intuitive sense, the conditional expectation is a
statistical lookup table that gives us for each setting of features the frequency of
positive outcomes given these features. The risk score is sometimes called Bayes
optimal. It minimizes the squared loss

E(Y− r(X))2

among all possible real-valued risk scores r(X). Minimization problems where we
try to approximate the target variable Y with a real-valued risk score are called
regression problems. In this context, risk scores are often called regressors. Although
our loss function was specific, there is a general lesson. Classification is often
attacked by first solving a regression problem to summarize the data in a single
real-valued risk score. We then turn the risk score into a classifier by thresholding.

Risk scores need not be optimal or learned from data. For an illustrative
example consider the well-known body mass index, due to Quetelet by the way,
which summarizes weight and height of a person into a single real number. In our
formal notation, the features are X = (H, W) where H denotes height in meters
and W denotes weight in kilograms. The body mass index corresponds to the score
function R = W/H2.

5



Figure 2: Plot of the body mass index.

We could interpret the body mass index as measuring risk of, say, diabetes.
Thresholding it at the value 30, we might decide that individuals with a body
mass index above this value are at risk of developing diabetes while others are
not. It does not take a medical degree to worry that the resulting classifier may
not be very accurate. The body mass index has a number of known issues leading
to errors when used for classification. We won’t go into detail, but it’s worth
noting that these classification errors can systematically align with certain groups
in the population. For instance, the body mass index tends to be inflated as a risk
measure for taller people due to scaling issues.

A more refined approach to finding a risk score for diabetes would be to solve
a regression problem involving the available covariates and the outcome variable.
Solved optimally, the resulting risk score would tell us for every setting of weight
(say, rounded to the nearest kg unit) and every physical height (rounded to the
nearest cm unit), the incidence rate of diabetes among individuals with these
values of weight and height. The target variable in this case is a binary indicator of
diabetes. So, r((176, 68)) would be the incidence rate of diabetes among individuals
who are 1.76m tall and weigh 68kg. The conditional expectation is likely more
useful as a risk measure of diabetes than the body mass index we saw earlier. After
all, the conditional expectation directly reflects the incidence rate of diabetes given
the observed characteristics, while the body mass index didn’t solve this specific
regression problem.

Varying thresholds and ROC curves

In the optimal predictor for classification error we chose a threshold of 1/2. This
exact number was a consequence of the equal cost for false positives and false
negatives. If a false positive was significantly more costly, we might wish to choose
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Figure 3: Example of an ROC curve

a higher threshold for declaring a positive. Each choice of a threshold results in a
specific trade-off between true positive rate and false positive rate. By varying the
threshold from 0 to 1, we can trace out a curve in a two-dimensional space where
the axes correspond to true positive rate and false positive rate. This curve is called
an ROC curve. ROC stands for receiver operator characteristic, a name pointing at
the roots of the concept in signal processing.

In statistical decision theory, the ROC curve is a property of a distribution (X, Y).
It gives us for each setting of false positive rate, the optimal true positive rate that
can be achieved for the given false positive rate on the distribution (X, Y). This
leads to several nice theoretical properties of the ROC curve. In the machine learn-
ing context, ROC curves are computed more liberally for any given risk score, even
if it isn’t optimal. The ROC curve is often used to eyeball how predictive our score
is of the target variable. A common measure of predictiveness is the area under
the curve (AUC), which equals the probability that a random positive instance gets
a score higher than a random negative instance. An area of 1/2 corresponds to
random guessing, and an area of 1 corresponds to perfect classification.

Supervised learning

Supervised learning is what makes classification algorithmic. It’s about how to
construct good classifiers from samples drawn from a population. The details of
supervised learning won’t matter for this chapter, but it is still worthwhile to have
a working understanding of the basic idea.

Suppose we have labeled data, also called training examples, of the form
(x1, y1), ..., (xn, yn), where each example is a pair (xi, yi) of an instance xi and a
label yi. We typically assume that these examples were drawn independently and

7



repeatedly from the same distribution (X, Y). A supervised learning algorithm
takes in training examples and returns a classifier, typically a threshold of a
score: f (x) = 1{r(x) > t}. A simple example of a learning algorithm is the familiar
least squares method that attempts to minimize the objective function

n

∑
i=1

(r(xi)− yi)
2 .

We saw earlier that at the population level, the optimal score is the conditional
expectation r(x) = E [Y | X = x] . The problem is that we don’t necessarily have
enough data to estimate each of the conditional probabilities required to construct
this score. After all, the number of possible values that x can assume is exponential
in the number of covariates.

The whole trick in supervised learning is to approximate this optimal solution
with algorithmically feasible solutions. In doing so, supervised learning must
negotiate a balance along three axes:

• Representation: Choose a family of functions that the score r comes from.
A common choice are linear functions r(x) = 〈w, x〉 that take the inner
product of the covariates x with some vector of coefficients w. More complex
representations involve non-linear functions, such as artificial neural networks.
This function family is often called the model class and the coefficients w are
called model parameters.

• Optimization: Solve the resulting optimization problem by finding model
parameters that minimize the loss function on the training examples.

• Generalization: Ensure that small loss on the training examples implies small
loss on the population that we drew the training examples from.

The three goals of supervised learning are entangled. A powerful representation
might make it easier to express complicated patterns, but it might also burden
optimization and generalization. Likewise, there are tricks to make optimization
feasible at the expense of representation or generalization.

For the remainder of this chapter, we can think of supervised learning as a black
box that provides us with classifiers when given labeled training data. What matters
are which properties these classifiers have at the population level. At the population
level, we interpret a classifier as a random variable by considering Ŷ = f (X). We
ignore how Ŷ was learned from a finite sample, what the functional form of the
classifier is, and how we estimate various statistical quantities from finite samples.
While finite sample considerations are fundamental to machine learning, they are
not central to the conceptual and technical questions around fairness that we will
discuss in this chapter.

Groups in the population

Chapter 2 introduced some of the reasons why individuals might want to object to
the use of statistical classification rules in consequential decisions. We now turn
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to one specific concern, namely, discrimination on the basis of membership in specific
groups of the population. Discrimination is not a general concept. It is concerned
with socially salient categories that have served as the basis for unjustified and
systematically adverse treatment in the past. United States law recognizes certain
protected categories including race, sex (which extends to sexual orientation), religion,
disability status, and place of birth.

In many classification tasks, the features X implicitly or explicitly encode
and individual’s status in a protected category. We will set aside the letter A
to designate a discrete random variable that captures one or multiple sensitive
characteristics. Different settings of the random variable A correspond to different
mutually disjoint groups of the population. The random variable A is often called
a sensitive attribute in the technical literature.

Note that formally we can always represent any number of discrete protected
categories as a single discrete attribute whose support corresponds to each of the
possible settings of the original attributes. Consequently, our formal treatment in
this chapter does apply to the case of multiple protected categories. This formal
maneuver, however, does not address the important concept of intersectionality that
refers to the unique forms of disadvantage that members of multiple protected
categories may experience.4

The fact that we allocate a special random variable for group membership does
not mean that we can cleanly partition the set of features into two independent
categories such as “neutral” and “sensitive”. In fact, we will see shortly that suffi-
ciently many seemingly neutral features can often give high accuracy predictions
of group membership. This should not be surprising. After all, if we think of A as
the target variable in a classification problem, there is reason to believe that the
remaining features would give a non-trivial classifier for A.

The choice of sensitive attributes will generally have profound consequences as
it decides which groups of the population we highlight, and what conclusions we
draw from our investigation. The taxonomy induced by discretization can on its
own be a source of harm if it is too coarse, too granular, misleading, or inaccurate.
The act of classifying status in protected categories, and collecting associated data,
can on its own can be problematic. We will revisit this important discussion in the
next chapter.

No fairness through unawareness

Some have hoped that removing or ignoring sensitive attributes would somehow
ensure the impartiality of the resulting classifier. Unfortunately, this practice can
be ineffective and even harmful.

In a typical dataset, we have many features that are slightly correlated with
the sensitive attribute. Visiting the website pinterest.com in the United States,
for example, had at the time of writing a small statistical correlation with being
female. The correlation on its own is too small to classify someone’s gender with
high accuracy. However, if numerous such features are available, as is the case in a
typical browsing history, the task of classifying gender becomes feasible at higher
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Figure 4: On the left, we see the distribution of a single feature that differs only
very slightly between the two groups. In both groups the feature follows a normal
distribution. Only the means are slightly different in each group. Multiple features
like this can be used to build a high accuracy group membership classifier. On the
right, we see how the accuracy grows as more and more features become available.

accuracy levels.
Several features that are slightly predictive of the sensitive attribute can be used

to build high accuracy classifiers for that attribute. In large feature spaces sensitive
attributes are generally redundant given the other features. If a classifier trained
on the original data uses the sensitive attribute and we remove the attribute, the
classifier will then find a redundant encoding in terms of the other features. This
results in an essentially equivalent classifier, in the sense of implementing the same
function.

To further illustrate the issue, consider a fictitious start-up that sets out to
predict your income from your genome. At first, this task might seem impossible.
How could someone’s DNA reveal their income? However, we know that DNA
encodes information about ancestry, which in turn correlates with income in some
countries such as the United States. Hence, DNA can likely be used to predict
income better than random guessing. The resulting classifier uses ancestry in
an entirely implicit manner. Removing redundant encodings of ancestry from
the genome is a difficult task that cannot be accomplished by removing a few
individual genetic markers. What we learn from this is that machine learning can
wind up building classifiers for sensitive attributes without explicitly being asked
to, simply because it is an available route to improving accuracy.

Redundant encodings typically abound in large feature spaces. For example,
gender can be predicted from retinal photographs with very high accuracy.5 What
about small hand-curated feature spaces? In some studies, features are chosen
carefully so as to be roughly statistically independent of each other. In such cases,
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the sensitive attribute may not have good redundant encodings. That does not
mean that removing it is a good idea. Medication, for example, sometimes depends
on race in legitimate ways if these correlate with underlying causal factors.6 Forcing
medications to be uncorrelated with race in such cases can harm the individual.

Statistical non-discrimination criteria

Statistical non-discrimination criteria aim to define the absence of discrimination
in terms of statistical expressions involving random variables describing a classifi-
cation or decision making scenario.
Formally, statistical non-discrimination criteria are properties of the joint distribu-
tion of the sensitive attribute A, the target variable Y, the classifier Ŷ or score R,
and in some cases also features X. This means that we can unambiguously decide
whether or not a criterion is satisfied by looking at the joint distribution of these
random variables.

Broadly speaking, different statistical fairness criteria all equalize some group-
dependent statistical quantity across groups defined by the different settings of A.
For example, we could ask to equalize acceptance rates across all groups. This
corresponds to imposing the constraint for all groups a and b:

P{Ŷ = 1 | A = a} = P{Ŷ = 1 | A = b} .

In the case where Ŷ ∈ {0, 1} is a binary classifier and we have two groups a
and b, we can determine if acceptance rates are equal in both groups by knowing
the three probabilities P{Ŷ = 1, A = a}, P{Ŷ = 1, A = b}, and P{A = a} that
fully specify the joint distribution of Ŷ and A. We can also estimate the relevant
probabilities given random samples from the joint distribution using standard
statistical arguments that are not the focus of this chapter.

Researchers have proposed dozens of different criteria, each trying to capture
different intuitions about what is fair. Simplifying the landscape of fairness criteria,
we can say that there are essentially three fundamentally different ones. Each of
these equalizes one of the following three statistics across all groups:

• Acceptance rate P{Ŷ = 1} of a classifier Ŷ
• Error rates P{Ŷ = 0 | Y = 1} and P{Ŷ = 1 | Y = 0} of a classifier Ŷ
• Outcome frequency given score value P{Y = 1 | R = r} of a score R

The three criteria can be generalized to score functions using simple (condi-
tional) independence statements. We use the notation U ⊥ V | W to denote that
random variables U and V are conditionally independent given W. This means that
conditional on any setting W = w, the random variables U and V are independent.

11



Table 3: Non-discrimination criteria

Independence Separation Sufficiency

R ⊥ A R ⊥ A | Y Y ⊥ A | R

Below we will introduce and discuss each of these conditions in detail. This
chapter focuses on the mathematical properties of and relationships between these
different criteria. Once we have acquired familiarity with the technical matter, we’ll
have a broader debate around the moral and normative content of these definitions
in Chapter 4.

Independence

Our first formal criterion requires the sensitive characteristic to be statistically
independent of the score.

Definition 1. Random variables (A, R) satisfy independence if A ⊥ R.

If R is a score function that satisfies independence, then any classifier Ŷ =
1{R > t} that thresholds the score a value t also satisfies independence. This is
true so long as the threshold is independent of group membership. Group-specific
thresholds may not preserve independence.

Independence has been explored through many equivalent and related defini-
tions. When applied to a binary classifier Ŷ, independence is often referred to as
demographic parity, statistical parity, group fairness, disparate impact and others. In this
case, independence corresponds to the condition

P{Ŷ = 1 | A = a} = P{Ŷ = 1 | A = b} ,

for all groups a, b. Thinking of the event Ŷ = 1 as “acceptance”, the condition
requires the acceptance rate to be the same in all groups. A relaxation of the
constraint introduces a positive amount of slack ε > 0 and requires that

P{Ŷ = 1 | A = a} ≥ P{Ŷ = 1 | A = b} − ε .

Note that we can swap a and b to get an inequality in the other direction. An
alternative relaxation is to consider a ratio condition, such as,

P{Ŷ = 1 | A = a}
P{Ŷ = 1 | A = b}

≥ 1− ε .

Some have argued that, for ε = 0.2, this condition relates to the 80 percent rule that
appears in discussions around disparate impact law.7

Yet another way to state the independence condition in full generality is to
require that A and R must have zero mutual information I(A; R) = 0. Mutual
information quantifies the amount of information that one random variable reveals
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about the other. We can define it in terms of the more standard entropy function
as I(A; R) = H(A) + H(R)− H(A, R). The characterization in terms of mutual
information leads to useful relaxations of the constraint. For example, we could
require I(A; R) ≤ ε.

Limitations of independence

Independence is pursued as a criterion in many papers, for multiple reasons. Some
argue that the condition reflects an assumption of equality: All groups have an
equal claim to acceptance and resources should therefore be allocated proportion-
ally. What we encounter here is a question about the normative significance of
independence, which we extend on in Chapter 4. But there is a more mundane rea-
son for the prevalence of this criterion, too. Independence has convenient technical
properties, which makes the criterion appealing to machine learning researchers. It
is often the easiest one to work with mathematically and algorithmically.

However, decisions based on a classifier that satisfies independence can have
undesirable properties (and similar arguments apply to other statistical criteria).
Here is one way in which this can happen, which is easiest to illustrate if we
imagine a callous or ill-intentioned decision maker. Imagine a company that in
group a hires diligently selected applicants at some rate p > 0. In group b, the
company hires carelessly selected applicants at the same rate p. Even though the
acceptance rates in both groups are identical, it is far more likely that unqualified
applicants are selected in one group than in the other. As a result, it will appear
in hindsight that members of group b performed worse than members of group a,
thus establishing a negative track record for group b.

A real-world phenomenon similar to this hypothetical example is termed the
glass cliff : women and people of color are more likely to be appointed CEO when a
firm is struggling. When the firm performs poorly during their tenure, they are
likely to be replaced by White men.8, 9

This situation might arise without positing malice: the company might have
historically hired employees primarily from group a, giving them a better under-
standing of this group. As a technical matter, the company might have substantially
more training data in group a, thus potentially leading to lower error rates of a
learned classifier within that group. The last point is a bit subtle. After all, if both
groups were entirely homogeneous in all ways relevant to the classification task,
more training data in one group would equally benefit both. Then again, the mere
fact that we chose to distinguish these two groups indicates that we believe they
might be heterogeneous in relevant aspects.

Separation

Our next criterion engages with the limitation of independence that we described.
In a typical classification problem, there is a difference between accepting a positive
instance or accepting a negative instance. The target variable Y suggests one way
of partitioning the population into strata of equal claim to acceptance. Viewed
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Figure 5: Graphical model representation of separation

this way, the target variable gives us a sense of merit. A particular demographic
group (A = a) may be more or less well represented in these different strata
defined by the target variable. A decision maker might argue that in such cases it
is justified to accept more or fewer individuals from group a.

These considerations motivate a criterion that demands independence within
each stratum of the population defined by target variable. We can formalize this
requirement using a conditional independence statement.

Definition 2. Random variables (R, A, Y) satisfy separation if R ⊥ A | Y.

The conditional independence statement applies even if the variables take on
more than two values each. For example, the target variable might partition the
population into many different types of individuals.

We can display separation as a graphical model in which R is separated from A
by the target variable Y:

If you haven’t seen graphical models before, don’t worry. All this says is that R
is conditionally independent of A given Y.

In the case of a binary classifier, separation is equivalent to requiring for all
groups a, b the two constraints

P{Ŷ = 1 | Y = 1, A = a} = P{Ŷ = 1 | Y = 1, A = b}
P{Ŷ = 1 | Y = 0, A = a} = P{Ŷ = 1 | Y = 0, A = b} .

Recall that P{Ŷ = 1 | Y = 1} is called the true positive rate of the classifier. It
is the rate at which the classifier correctly recognizes positive instances. The false
positive rate P{Ŷ = 1 | Y = 0} highlights the rate at which the classifier mistakenly
assigns positive outcomes to negative instances. Recall that the true positive rate
equals 1 minus the false negative rate. What separation therefore requires is that
all groups experience the same false negative rate and the same false positive rate.
Consequently, the definition asks for error rate parity.

This interpretation in terms of equality of error rates leads to natural relaxations.
For example, we could only require equality of false negative rates. A false
negative, intuitively speaking, corresponds to denied opportunity in scenarios
where acceptance is desirable, such as in hiring. In contrast, when the task is
to identify high-risk individuals, as in the case of loan default prediction, it is
common to denote the undesirable outcome as the “positive” class. This inverts
the meaning of false positives and false negatives, and is a frequent source of
terminological confusion.
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Why equalize error rates?

The idea of equalizing error rates across has been subject to critique. Much of
the debate has to do with the fact that an optimal predictor need not have equal
error rates in all groups. Specifically, when the propensity of positive outcomes
(P{Y = 1}) differs between groups, an optimal predictor will generally have
different error rates. In such cases, enforcing equality of error rates leads to a
predictor that performs worse in some groups than it could be. How is that fair?

One response is that separation puts emphasis on the question: Who bears the
cost of misclassification? A violation of separation highlights the fact that different
groups experience different costs of misclassification. There is concern that higher
error rates coincide with historically marginalized and disadvantaged groups, thus
inflicting additional harm on these groups.

The act of measuring and reporting group specific error rates can create an
incentive for decision makers to work toward improving error rates through
collecting better datasets and building better models. If there is no way to improve
error rates in some group relative to others, this raises questions about the legitimate
use of machine learning in such cases. We will return to this normative question in
later chapters.

A second line of concern with the separation criterion relates to the use of the
target variable as a stand-in for merit. Researchers have rightfully pointed out
that in many cases machine learning practitioners use target variables that reflect
existing inequality and injustice. In such cases, satisfying separation with respect
to an inadequate target variable does no good. This valid concern, however, applies
equally to the use of supervised learning at large in such cases. If we cannot
agree on an adequate target variable, the right action may be to suspend the use of
supervised learning.

These observations hint at the subtle role that non-discrimination criteria play.
Rather than presenting constraints that we can optimize for without further thought,
they can help surface issues with the use of machine learning in specific scenarios.

Visualizing separation

A binary classifier that satisfies separation must achieve the same true positive
rates and the same false positive rates in all groups. We can visualize this condition
by plotting group-specific ROC curves.

We see the ROC curves of a score displayed for each group separately. The two
groups have different curves indicating that not all trade-offs between true and
false positive rate are achievable in both groups. The trade-offs that are achievable
in both groups are precisely those that lie under both curves, corresponding to the
intersection of the regions enclosed by the curves.

The highlighted region is the feasible region of trade-offs that we can achieve in
all groups. However, the thresholds that achieve these trade-offs are in general also
group-specific. In other words, the bar for acceptance varies by group. Trade-offs
that are not exactly on the curves, but rather in the interior of the region, require
randomization. To understand this point, think about how we can realize trade-offs
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Figure 6: ROC curve by group.

Figure 7: Intersection of area under the curves.
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on the the dashed line in the plot. Take one classifier that accepts everyone. This
corresponds to true and false positive rate 1, hence achieving the upper right
corner of the plot. Take another classifier that accepts no one, resulting in true
and false positive rate 0, the lower left corner of the plot. Now, construct a third
classifier that given an instance randomly picks and applies the first classifier
with probability 1− p, and the second with probability p. This classifier achieves
true and false positive rate p thus giving us one point on the dashed line in the
plot. In the same manner, we could have picked any other pair of classifiers and
randomized between them. This way we can realize the entire area under the ROC
curve.

Conditional acceptance rates

A relative of the independence and separation criteria is common in debates around
discrimination. Here, we designate a random variable W and ask for conditional
independence of the decision Ŷ and group status A conditional on the variable W.
That is, for all values w that W could take on, and all groups a and b we demand:

P{Ŷ = 1 |W = w, A = a} = P{Ŷ = 1 |W = w, A = b}

Formally, this is equivalent to replacing Y with W in our definition of separation.
Often W corresponds to a subset of the covariates of X. For example, we might
demand that independence holds among all individuals of equal educational at-
tainment. In this case, we would choose W to reflect educational attainment. In
doing so, we license the decision maker to distinguish between individuals with
different educational backgrounds. When we apply this criterion, the burden
falls on the proper choice of what to condition on, which determines whether we
detect discrimination or not. In particular, we must be careful not to condition on
the mechanism by which the decision maker discriminates. For example, an ill-
intentioned decision maker might discriminate by imposing excessive educational
requirements for a specific job, exploiting that this level of education is distributed
unevenly among different groups. We will be able to return to the question of what
to condition on with significantly more substance once we reach familiarity with
causality in Chapter 5.

Sufficiency

Our third criterion formalizes that the score already subsumes the sensitive charac-
teristic for the purpose of predicting the target. This idea again boils down to a
conditional independence statement.

Definition 3. We say the random variables (R, A, Y) satisfy sufficiency if Y ⊥ A | R.

We can display sufficiency as a graphical model as we did with separation
before.
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Figure 8: Graphical model representation of sufficiency

Let us write out the definition more explicitly in the binary case where Y ∈
{0, 1}. In this case, a random variable R is sufficient for A if and only if for all
groups a, b and all values r in the support of R, we have

P{Y = 1 | R = r, A = a} = P{Y = 1 | R = r, A = b} .

If we replace R by a binary predictor Ŷ, we recognize this condition as requiring a
parity of positive/negative predictive values across all groups.

Calibration and sufficiency

Sufficiency is closely related to an important notion called calibration. In some
applications it is desirable to be able to interpret the values of the score functions
as if they were probabilities. The notion of calibration allows us to move in
this direction. Restricting our attention to binary outcome variables, we say
that a score R is calibrated with respect to an outcome variable Y if for all score
values r ∈ [0, 1], we have

P{Y = 1 | R = r} = r .

This condition means that the set of all instances assigned a score value r has an r
fraction of positive instances among them. The condition refers to the group of
all individuals receiving a particular score value. Calibration need not hold in
subgroups of the population. In particular, it’s important not to interpret the score
as an individual probability. Calibration does not tell us anything about the outcome
of a specific individual that receives a particular value.

From the definition, we can see that sufficiency is closely related to the idea of
calibration. To formalize the connection we say that the score R satisfies calibration
by group if it satisfies

P{Y = 1 | R = r, A = a} = r ,

for all score values r and groups a. Observe that calibration is the same requirement
at the population level without the conditioning on A.

Fact 2. Calibration by group implies sufficiency.

Conversely, sufficiency is only slightly weaker than calibration by group in the
sense that a simple renaming of score values goes from one property to the other.

Proposition 1. If a score R satisfies sufficiency, then there exists a function ` : [0, 1]→
[0, 1] so that `(R) satisfies calibration by group.
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Proof. Fix any group a and put `(r) = P{Y = 1 | R = r, A = a}. Since R satisfies
sufficiency, this probability is the same for all groups a and hence this map ` is the
same regardless of what value a we chose.

Now, consider any two groups a, b. We have,

r = P{Y = 1 | `(R) = r, A = a}
= P{Y = 1 | R ∈ `−1(r), A = a}
= P{Y = 1 | R ∈ `−1(r), A = b}
= P{Y = 1 | `(R) = r, A = b} ,

thus showing that `(R) is calibrated by group.

We conclude that sufficiency and calibration by group are essentially equivalent
notions.

In practice, there are various heuristics to achieve calibration. For example,
Platt scaling takes a possibly uncalibrated score, treats it as a single feature, and fits
a one variable regression model against the target variable based on this feature.10

We also apply Platt scaling for each of the groups defined by the sensitive attribute.

Calibration by group as a consequence of unconstrained learning

Sufficiency is often satisfied by the outcome of unconstrained supervised learning
without the need for any explicit intervention. This should not come as a surprise.
After all, the goal of supervised learning is to approximate an optimal score
function. The optimal score function we saw earlier, however, is calibrated for any
group as the next fact states formally.

Fact 3. The optimal score r(x) = E[Y | X = x] satisfies group calibration for any group.
Specifically, for any set S we have

P{Y = 1 | R = r, X ∈ S} = r.

We generally expect a learned score to satisfy sufficiency in cases where the
group membership is either explicitly encoded in the data or can be predicted
from the other attributes. To illustrate this point we look at the calibration values
of a standard machine learning model, a random forest ensemble, on an income
classification task derived from the American Community Survey of the US Census
Bureau.11 We restrict the dataset to the three most populous states, California,
Texas, and Florida.

After splitting the data into training and testing data, we fit a random forest
ensemble using the standard Python library sklearn on the training data. We then
examine how well-calibrated the model is out of the box on test data.

We see that the calibration curves for the three largest racial groups in the
dataset, which the Census Bureau codes as “White alone”, “Black or African
American alone”, and “Asian alone”, are very close to the main diagonal. This
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Figure 9: Group calibration curves on Census ACS data

means that the scores derived from our random forest model satisfy calibration by
group up to small error. The same is true when looking at the two groups “Male”
and “Female” in the dataset.

These observations are no coincidence. Theory shows that under certain tech-
nical conditions, unconstrained supervised learning does, in fact, imply group
calibration.12 Note, however, that for this to be true the classifier must be able
to detect group membership. If detecting group membership is impossible, then
group calibration generally fails.

The lesson is that sufficiency often comes for free (at least approximately)
as a consequence of standard machine learning practices. The flip side is that
imposing sufficiency as a constraint on a classification system may not be much of
an intervention. In particular, it would not effect a substantial change in current
practices.

How to satisfy a non-discrimination criterion

Now that we have formally introduced three non-discrimination criteria, it is
worth asking how we can achieve them algorithmically. We distinguish between
three different techniques. While they generally apply to all the criteria and
their relaxations that we review in this chapter, our discussion here focuses on
independence.

• Pre-processing: Adjust the feature space to be uncorrelated with the sensitive
attribute.

• In-training: Work the constraint into the optimization process that constructs
a classifier from training data.

• Post-processing: Adjust a learned classifier so as to be uncorrelated with the
sensitive attribute.

The three approaches have different strengths and weaknesses.

20



Pre-processing is a family of techniques to transform a feature space into a rep-
resentation that as a whole is independent of the sensitive attribute. This approach
is generally agnostic to what we do with the new feature space in downstream
applications. After the pre-processing transformation ensures independence, any
deterministic training process on the new space will also satisfy independence.
This is a formal consequence of the well-known data processing inequality from
information theory.13

Achieving independence at training time can lead to the highest utility since
we get to optimize the classifier with this criterion in mind. The disadvantage
is that we need access to the raw data and training pipeline. We also give up a
fair bit of generality as this approach typically applies to specific model classes or
optimization problems.

Post-processing refers to the process of taking a trained classifier and adjusting
it possibly depending on the sensitive attribute and additional randomness in
such a way that independence is achieved. Formally, we say a derived classifier
Ŷ = F(R, A) is a possibly randomized function of a given score R and the sensitive
attribute. Given a cost for false negatives and false positives, we can find the derived
classifier that minimizes the expected cost of false positive and false negatives
subject to the fairness constraint at hand. Post-processing has the advantage that it
works for any black-box classifier regardless of its inner workings. There’s no need
for re-training, which is useful in cases where the training pipeline is complex. It’s
often also the only available option when we have access only to a trained model
with no control over the training process.

Post-processing sometimes even comes with an optimality guarantee: If we
post-process the Bayes optimal score to achieve separation, then the resulting
classifier will be optimal among all classifiers satisfying separation.14 Conventional
wisdom has it that certain machine learning models, like gradient boosted decision
trees, are often nearly Bayes optimal on tabular datasets with many more rows than
columns. In such cases, post-processing by adjusting thresholds is nearly optimal.

A common objection to post-processing, however, is that the resulting classifier
uses group membership quite explicitly by setting different acceptance thresholds
for different groups.

Relationships between criteria

The criteria we reviewed constrain the joint distribution in non-trivial ways. We
should therefore suspect that imposing any two of them simultaneously over-
constrains the space to the point where only degenerate solutions remain. We will
now see that this intuition is largely correct. What this shows, in particular, is that
if we observe that one criterion holds, we expect others to be violated.

Independence versus sufficiency

We begin with a simple proposition that shows how in general independence
and sufficiency are mutually exclusive. The only assumption needed here is that
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the sensitive attribute A and the target variable Y are not independent. This is a
different way of saying that group membership has an effect on the statistics of
the target variable. In the binary case, this means one group has a higher rate of
positive outcomes than another. Think of this as the typical case.

Proposition 2. Assume that A and Y are not independent. Then sufficiency and indepen-
dence cannot both hold.

Proof. By the contraction rule for conditional independence,

A ⊥ R and A ⊥ Y | R =⇒ A ⊥ (Y, R) =⇒ A ⊥ Y .

To be clear, A ⊥ (Y, R) means that A is independent of the pair of random
variables (Y, R). Dropping R cannot introduce a dependence between A and Y.

In the contrapositive,

A 6⊥ Y =⇒ A 6⊥ R or A 6⊥ Y | A .

Independence versus separation

An analogous result of mutual exclusion holds for independence and separation.
The statement in this case is a bit more contrived and requires the additional
assumption that the target variable Y is binary. We also additionally need that the
score is not independent of the target. This is a rather mild assumption, since any
useful score function should have correlation with the target variable.

Proposition 3. Assume Y is binary, A is not independent of Y, and R is not independent
of Y. Then, independence and separation cannot both hold.

Proof. Assume Y ∈ {0, 1}. In its contrapositive form, the statement we need to
show is

A ⊥ R and A ⊥ R | Y =⇒ A ⊥ Y or R ⊥ Y

By the law of total probability,

P{R = r | A = a} = ∑
y

P{R = r | A = a, Y = y}P{Y = y | A = a}

Applying the assumption A ⊥ R and A ⊥ R | Y, this equation simplifies to

P{R = r} = ∑
y

P{R = r | Y = y}P{Y = y | A = a}

Applied differently, the law of total probability also gives

P{R = r} = ∑
y

P{R = r | Y = y}P{Y = y}
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Combining this with the previous equation, we have

∑
y

P{R = r | Y = y}P{Y = y} = ∑
y

P{R = r | Y = y}P{Y = y | A = a}

Careful inspection reveals that when y ranges over only two values, this equa-
tion can only be satisfied if A ⊥ Y or R ⊥ Y.

Indeed, we can rewrite the equation more compactly using the symbols p =
P{Y = 0}, pa = P{Y = 0 | A = a}, ry = P{R = r | Y = y}, as:

pr0 + (1− p)r1 = par0 + (1− pa)r1.

Equivalently, p(r0 − r1) = pa(r0 − r1).
This equation can only be satisfied if r0 = r1, in which case R ⊥ Y, or if p = pa

for all a, in which case Y ⊥ A.

The claim is not true when the target variable can assume more than two values,
which is a natural case to consider.

Separation versus sufficiency

Finally, we turn to the relationship between separation and sufficiency. Both
ask for a non-trivial conditional independence relationship between the three
variables A, R, Y. Imposing both simultaneously leads to a degenerate solution
space, as our next proposition confirms.

Proposition 4. Assume that all events in the joint distribution of (A, R, Y) have positive
probability, and assume A 6⊥ Y. Then, separation and sufficiency cannot both hold.

Proof. A standard fact (Theorem 17.2 in Wasserman’s text15) about conditional
independence shows

A ⊥ R | Y and A ⊥ Y | R =⇒ A ⊥ (R, Y) .

Moreover,
A ⊥ (R, Y) =⇒ A ⊥ R and A ⊥ Y .

Taking the contrapositive completes the proof.

For a binary target, the non-degeneracy assumption in the previous proposition
states that in all groups, at all score values, we have both positive and negative
instances. In other words, the score value never fully resolves uncertainty regarding
the outcome. Recall that sufficiency holds for the Bayes optimal score function.
The proposition therefore establishes an important fact: Optimal scores generally
violate separation.

The proposition also applies to binary classifiers. Here, the assumption says
that within each group the classifier must have nonzero true positive, false positive,
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true negative, and false negative rates. We can weaken this assumption a bit and
require only that the classifier is imperfect in the sense of making at least one false
positive prediction. What’s appealing about the resulting claim is that its proof
essentially only uses a well-known relationship between true positive rate (recall)
and positive predictive value (precision). This trade-off is often called precision-recall
trade-off.

Proposition 5. Assume Y is not independent of A and assume Ŷ is a binary classifier
with nonzero false positive rate. Then, separation and sufficiency cannot both hold.

Proof. Since Y is not independent of A there must be two groups, call them 0 and 1,
such that

p0 = P{Y = 1 | A = 0} 6= P{Y = 1 | A = 1} = p1 .

Now suppose that separation holds. Since the classifier is imperfect this means
that all groups have the same non-zero false positive rate FPR > 0, and the same
true positive rate TPR ≥ 0. We will show that sufficiency does not hold.

Recall that in the binary case, sufficiency implies that all groups have the same
positive predictive value. The positive predictive value in group a, denoted PPVa
satisfies

PPVa =
TPRpa

TPRpa + FPR(1− pa)
.

From the expression we can see that PPVa = PPVb only if TPR = 0 or FPR = 0.
The latter is ruled out by assumption. So it must be that TPR = 0. However, in this
case, we can verify that the negative predictive value NPV0 in group 0 must be
different from the negative predictive value NPV1 in group 1. This follows from
the expression

NPVa =
(1− FPR)(1− pa)

(1− TPR)pa + (1− FPR)(1− pa)
.

Hence, sufficiency does not hold.

In the proposition we just proved, separation and sufficiency both refer to the
binary classifier Ŷ. The proposition does not apply to the case where separation
refers to a binary classifier Ŷ = 1{R > t} and sufficiency refers to the underlying
score function R.

Case study: Credit scoring

We now apply some of the notions we saw to credit scoring. Credit scores support
lending decisions by giving an estimate of the risk that a loan applicant will default
on a loan. Credit scores are widely used in the United States and other countries
when allocating credit, ranging from micro loans to jumbo mortgages. In the
United States, there are three major credit-reporting agencies that collect data on
various lendees. These agencies are for-profit organizations that each offer risk
scores based on the data they collected. FICO scores are a well-known family of
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proprietary scores developed by the FICO corporation and sold by the three credit
reporting agencies.

Regulation of credit agencies in the United States started with the Fair Credit
Reporting Act, first passed in 1970, that aims to promote the accuracy, fairness, and
privacy of consumer of information collected by the reporting agencies. The Equal
Credit Opportunity Act, a United States law enacted in 1974, makes it unlawful for
any creditor to discriminate against any applicant the basis of race, color, religion,
national origin, sex, marital status, or age.

Score distribution

Our analysis relies on data published by the Federal Reserve.16 The dataset provides
aggregate statistics from 2003 about a credit score, demographic information (race
or ethnicity, gender, marital status), and outcomes (to be defined shortly). We’ll
focus on the joint statistics of score, race, and outcome, where the race attributes
assume four values detailed below.

Table 4: Credit score distribution by ethnicity

Race or ethnicity Samples with both score and outcome

White 133,165

Black 18,274

Hispanic 14,702

Asian 7,906

Total 174,047

The score used in the study is based on the TransUnion TransRisk score.
TransUnion is a US credit-reporting agency. The TransRisk score is in turn based
on FICO scores. The Federal Reserve renormalized the scores for the study to vary
from 0 to 100, with 0 being least creditworthy.

The information on race was provided by the Social Security Administration,
thus relying on self-reported values. The cumulative distribution of these credit
scores strongly depends on the racial group as the next figure reveals.

Performance variables and ROC curves

As is often the case, the outcome variable is a subtle aspect of this data set. Its
definition is worth emphasizing. Since the score model is proprietary, it is not
clear what target variable was used during the training process. What is it then
that the score is trying to predict? In a first reaction, we might say that the goal
of a credit score is to predict a default outcome. However, that’s not a clearly
defined notion. Defaults vary in the amount of debt recovered, and the amount of
time given for recovery. Any single binary performance indicator is typically an
oversimplification.
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Figure 10: Cumulative density of scores by group.

What is available in the Federal Reserve data is a so-called performance variable
that measures a serious delinquency in at least one credit line of a certain time period.
More specifically, the Federal Reserve states

(the) measure is based on the performance of new or existing accounts
and measures whether individuals have been late 90 days or more on
one or more of their accounts or had a public record item or a new
collection agency account during the performance period.

With this performance variable at hand, we can look at the ROC curve to get a
sense of how predictive the score is in different demographics.

The meaning of true positive rate is the rate of predicted positive performance
given positive performance. Similarly, false positive rate is the rate of predicted negative
performance given a positive performance.

We see that the shapes appear roughly visually similar in the groups, although
the ‘White’ group encloses a noticeably larger area under the curve than the ‘Black’
group. Also note that even two ROC curves with the same shape can correspond to
very different score functions. A particular trade-off between true positive rate and
false positive rate achieved at a threshold t in one group could require a different
threshold t′ in the other group.

Comparison of different criteria

With the score data at hand, we compare four different classification strategies:
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Figure 11: ROC curve of credit score by group.

• Maximum profit: Pick possibly group-dependent score thresholds in a way
that maximizes profit.

• Single threshold: Pick a single uniform score threshold for all groups in a
way that maximizes profit.

• Independence: Achieve an equal acceptance rate in all groups. Subject to
this constraint, maximize profit.

• Separation: Achieve an equal true/false positive rate in all groups. Subject
to this constraint, maximize profit.

To make sense of maximizing profit, we need to assume a reward for a true
positive (correctly predicted positive performance), and a cost for false positives
(negative performance predicted as positive). In lending, the cost of a false positive
is typically many times greater than the reward for a true positive. In other words,
the interest payments resulting from a loan are relatively small compared with the
loan amount that could be lost. For illustrative purposes, we imagine that the cost
of a false positive is 6 times greater than the return on a true positive. The absolute
numbers don’t matter. Only the ratio matters. This simple cost structure glosses
over a number of details that are likely relevant for the lender such as the terms of
the loan.

There is another major caveat to the kind of analysis we’re about to do. Since
we’re only given aggregate statistics, we cannot retrain the score with a particular
classification strategy in mind. The only thing we can do is to define a setting
of thresholds that achieves a particular criterion. This approach may be overly
pessimistic with regards to the profit achieved subject to each constraint. For this
reason and the fact that our choice of cost function was rather arbitrary, we do
not state the profit numbers. The numbers can be found in the original analysis,14

which reports that ‘single threshold’ achieves higher profit than ‘separation’, which
in turn achieves higher profit than ‘independence’.

What we do instead is to look at the different trade-offs between true and false
positive rate that each criterion achieves in each group.
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Figure 12: ROC curves with optimal thresholds for different criteria.

We can see that even though the ROC curves are somewhat similar, the resulting
trade-offs can differ widely by group for some of the criteria. The true positive rate
achieved by max profit for the Asian group is twice of what it is for the Black group.
The separation criterion, of course, results in the same trade-off in all groups.
Independence equalizes acceptance rate, but leads to widely different trade-offs.
For instance, the Black group has a false positive rate more than three times higher
than the false positive rate of the Asian group.

Calibration values

Finally, we consider the non-default rate by group. This corresponds to the
calibration plot by group.

We see that the performance curves by group are reasonably well aligned. This
means that a monotonic transformation of the score values would result in a score
that is roughly calibrated by group according to our earlier definition. Due to the
differences in score distribution by group, it could nonetheless be the case that
thresholding the score leads to a classifier with different positive predictive values
in each group. Calibration is typically lost when taking a multi-valued score and
making it binary.

Inherent limitations of observational criteria

The criteria we’ve seen so far have one important aspect in common. They are
properties of the joint distribution of the score, sensitive attribute, and the target
variable. In other words, if we know the joint distribution of the random vari-
ables (R, A, Y), we can without ambiguity determine whether this joint distribution
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Figure 13: Calibration values of credit score by group.

satisfies one of these criteria or not. For example, if all variables are binary, there
are eight numbers specifying the joint distributions. We can verify each of the
criteria we discussed in this chapter by looking only at these eight numbers and
nothing else. We can broaden this notion a bit and also include all other features
in X, not just the group attribute. So, let’s call a criterion observational if it is a
property of the joint distribution of the features X, the sensitive attribute A, a
score function R and an outcome variable Y. Intuitively speaking, a criterion is
observational if we can write it down unambiguously using probability statements
involving the random variables at hand.

Observational definitions have many appealing aspects. They’re often easy
to state and require only a lightweight formalism. They make no reference to
the inner workings of the classifier, the decision maker’s intent, the impact of the
decisions on the population, or any notion of whether and how a feature actually
influences the outcome. We can reason about them fairly conveniently as we saw
earlier. In principle, observational definitions can always be verified given samples
from the joint distribution—subject to statistical sampling error.

This simplicity of observational definitions also leads to inherent limitations.
What observational definitions hide are the mechanisms that created an observed
disparity. In one case, a difference in acceptance rate could be due to spiteful
consideration of group membership by a decision maker. In another case, the
difference in acceptance rates could reflect an underlying inequality in society
that gives one group an advantage in getting accepted. While both are cause for
concern, in the first case discrimination is a direct action of the decision maker. In
the the other case, the locus of discrimination may be outside the agency of the
decision maker.

Observational criteria cannot, in general, give satisfactory answers as to what the
causes and mechanisms of discrimination are. Subsequent chapters, in particular
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our chapter on causality, develop tools to go beyond the scope of observational
criteria.

Chapter notes

For the early history of probability and the rise of statistical thinking, turn to books
by Hacking,17, 18 Porter,2 and Desrosières.1

The statistical decision theory we covered in this chapter is also called (signal)
detection theory and is the subject of various textbooks. What we call classification
is also called prediction in other contexts. Likewise, classifiers are often called
predictors. For a graduate introduction to machine learning, see the text by Hardt
and Recht.19 Wasserman’s textbook Wasserman15 provides additional statistical
background, including an exposition of conditional independence that is helpful in
understanding some of the material of the chapter.

Similar fairness criteria to the ones reviewed in this chapter were already
known in the 1960s and 70s, primarily in the education testing and psychometrics
literature.20 The first and most influential fairness criterion in this context is due to
Cleary.21, 22 A score passes Cleary’s criterion if knowledge of group membership
does not help in predicting the outcome from the score with a linear model.
This condition follows from sufficiency and can be expressed by replacing the
conditional independence statement with an analogous statement about partial
correlations.23

Einhorn and Bass24 considered equality of precision values, which is a relaxation
of sufficiency as we saw earlier. Thorndike25 considered a weak variant of calibra-
tion by which the frequency of positive predictions must equal the frequency of
positive outcomes in each group, and proposed achieving it via a post-processing
step that sets different thresholds in different groups. Thorndike’s criterion is
incomparable to sufficiency in general.

Darlington23 stated four different criteria in terms of succinct expressions
involving the correlation coefficients between various pairs of random variables.
These criteria include independence, a relaxation of sufficiency, a relaxation of
separation, and Thorndike’s criterion. Darlington included an intuitive visual
argument showing that the four criteria are incompatible except in degenerate
cases. Lewis26 reviewed three fairness criteria including equal precision and equal
true/false positive rates.

These important early works were re-discovered later in the machine learning
and data mining community.20 Numerous works considered variants of inde-
pendence as a fairness constraint.27, 28 Feldman et al.7 studied a relaxation of
demographic parity in the context of disparate impact law. Zemel et al.29 adopted
the mutual information viewpoint and proposed a heuristic pre-processing ap-
proach for minimizing mutual information. As early as 2012, Dwork et al.30 argued
that the independence criterion was inadequate as a fairness constraint. In par-
ticular, this work identified the problem with independence we discussed in this
chapter.
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The separation criterion appeared under the name equalized odds,14 alongside the
relaxation to equal false negative rates, called equality of opportunity. These criteria
also appeared in an independent work31 under different names. Woodworth et
al.32 studied a relaxation of separation stated in terms of correlation coefficients.
This relaxation corresponds to the third criterion studied by Darlington.23

ProPublica33 implicitly adopted equality of false positive rates as a fairness cri-
terion in their article on COMPAS scores. Northpointe, the maker of the COMPAS
software, emphasized the importance of calibration by group in their rebuttal34 to
ProPublica’s article. Similar arguments were made quickly after the publication
of ProPublica’s article by bloggers including Abe Gong. There has been extensive
scholarship on actuarial risk assessment in criminal justice that long predates the
ProPublica debate; Berk et al.35 provide a survey with commentary.

Variants of the trade-off between separation and sufficiency were shown by
Chouldechova36 and Kleinberg et al.37 Each of them considered somewhat different
criteria to trade-off. Chouldechova’s argument is very similar to the proof we
presented that invokes the relationship between positive predictive value and
true positive rate. Subsequent work38 considers trade-offs between relaxed and
approximate criteria. The other trade-off results presented in this chapter are new
to this book. The proof of the proposition relating separation and independence
for binary classifiers, as well as the counterexample for ternary classifiers, is due to
Shira Mitchell and Jackie Shadlen, pointed out to us in personal communication.

The credit score case study is from Hardt, Price, and Srebro14 However, we
highlight the independence criterion in our plots, whereas the authors of the paper
highlight the equality of opportunity criterion instead. The numbers about the
racial composition of the dataset come from the “Estimation sample” column of
Table 9 on the webpage for the Federal Reserve report.16

A dictionary of criteria

For convenience we collect some demographic fairness criteria below that have been
proposed in the past (not necessarily including the original reference). We’ll match
them to their closest relative among the three criteria independence, separation,
and sufficiency. This table is meant as a reference only and is not exhaustive. There
is no need to memorize these different names.

Table 5: List of statistical non-discrimination criteria

Name Criterion Note Reference

Independence Indep. Equiv. Calders et al. (2009)
Group fairness Indep. Equiv.

Demographic parity Indep. Equiv.
Conditional statistical parity Indep. Relax. Corbett-Davies et al. (2017)

Darlington criterion (4) Indep. Relax. Darlington (1971)
Equal opportunity Separ. Relax. Hardt, Price, Srebro (2016)

Equalized odds Separ. Equiv. Hardt, Price, Srebro (2016)
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Name Criterion Note Reference

Conditional procedure accuracy Separ. Equiv. Berk et al. (2017)
Avoiding disparate mistreatment Separ. Equiv. Zafar et al. (2017)

Balance for the negative class Separ. Relax. Kleinberg et al. (2016)
Balance for the positive class Separ. Relax. Kleinberg et al. (2016)

Predictive equality Separ. Relax. Corbett-Davies et al. (2017)
Equalized correlations Separ. Relax. Woodworth (2017)
Darlington criterion (3) Separ. Relax. Darlington (1971)

Cleary model Suff. Relax. Cleary (1966)
Conditional use accuracy Suff. Equiv. Berk et al. (2017)

Predictive parity Suff. Relax. Chouldechova (2016)
Calibration within groups Suff. Equiv. Chouldechova (2016)
Darlington criterion (1), (2) Suff. Relax. Darlington (1971)
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