
8

Datasets

It’s become commonplace to point out that machine learning models are only
as good as the data they’re trained on. The old slogan “garbage in, garbage out” no
doubt applies to machine learning practice, as does the related catchphrase “bias in,
bias out”. Yet, these proverbs still understate—and somewhat misrepresent—the
significance of data for machine learning.

It’s not only the output of a learning algorithm that may suffer with poor
input data. A dataset serves many other vital functions in the machine learning
ecosystem. The dataset itself is an integral part of the problem formulation. It
implicitly sorts out and operationalizes what the problem is that practitioners end
up solving. Datasets have also shaped the course of entire scientific communities
in their capacity to measure and benchmark progress, support competitions, and
interface between researchers in academia and practitioners in industry.

If so much hinges on data in machine learning, it might come as a surprise
that there is no simple answer to the question of what makes data good for what
purpose. The collection of data for machine learning applications has not followed
any established theoretical framework, certainly not one that was recognized a
priori.

In this chapter, we take a closer look at popular datasets in the field of machine
learning and the benchmarks that they support. We will use this to tease apart
the different roles datasets play in scientific and engineering contexts. Then we
will review the harms associated with data and discuss how they can be mitigated
based on the dataset’s role. We will conclude with several broad directions for
improving data practices.

We limit the scope of this chapter in some important ways. Our focus will be
largely on publicly available datasets that support training and testing purposes
in machine learning research and applications. Our focus excludes large swaths
of industrial data collection, surveillance, and data mining practices. It also
excludes data purposefully collected to test specific scientific hypotheses, such as,
experimental data gathered in a medical trial.

A tour of datasets in different domains

The creation of datasets in machine learning does not follow a clear theoretical
framework. Datasets aren’t collected to test a specific scientific hypothesis. In fact,
we will see that there are many different roles data plays in machine learning. As a
result, it makes sense to start by looking at a few influential datasets from different
domains to get a better feeling for what they are, what motivated their creation,
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how they organized communities, and what impact they had.

TIMIT

Automatic speech recognition is a machine learning problem of significant com-
mercial interest. Its roots date back to the early 20th century.1

Interestingly, speech recognition also features one of the oldest benchmarks
data sets, the TIMIT (Texas Instruments/Massachusetts Institute for Technology)
data. The creation of the dataset was funded through a 1986 DARPA program on
speech recognition. In the mid-eighties, artificial intelligence was in the middle
of a “funding winter” where many governmental and industrial agencies were
hesitant to sponsor AI research because it often promised more than it could
deliver. DARPA program manager Charles Wayne proposed that a way around
this problem was establishing more rigorous evaluation methods. Wayne enlisted
the National Institute of Standards and Technology to create and curate shared
datasets for speech, and he graded success in his program based on performance
on recognition tasks on these datasets.

Many now credit Wayne’s program with kick starting a revolution of progress
in speech recognition.234 According to Kenneth Ward Church,

It enabled funding to start because the project was glamour-and-deceit-
proof, and to continue because funders could measure progress over
time. Wayne’s idea makes it easy to produce plots which help sell
the research program to potential sponsors. A less obvious benefit
of Wayne’s idea is that it enabled hill climbing. Researchers who
had initially objected to being tested twice a year began to evaluate
themselves every hour.

A first prototype of the TIMIT dataset was released in December of 1988 on a
CD-ROM. An improved release followed in October 1990. TIMIT already featured
the training/test split typical for modern machine learning benchmarks. There’s a
fair bit we know about the creation of the data due to its thorough documentation.5

TIMIT features a total of about 5 hours of speech, composed of 6300 utterances,
specifically, 10 sentences spoken by each of 630 speakers. The sentences were
drawn from a corpus of 2342 sentences such as the following.

She had your dark suit in greasy wash water all year. (sa1)

Don’t ask me to carry an oily rag like that. (sa2)

This was easy for us. (sx3)

Jane may earn more money by working hard. (sx4)

She is thinner than I am. (sx5)

Bright sunshine shimmers on the ocean. (sx6)

Nothing is as offensive as innocence. (sx7)

The TIMIT documentation distinguishes between 8 major dialect regions in the
United States, documented as New England, Northern, North Midland, South Midland,
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Southern, New York City, Western, Army Brat (moved around). Of the speakers, 70%
are male and 30% are female. All native speakers of American English, the subjects
were primarily employees of Texas Instruments at the time. Many of them were
new to the Dallas area where they worked.

Racial information was supplied with the distribution of the data and coded
as “White”, “Black”, “American Indian”, “Spanish-American”, “Oriental”, and
“Unknown”. Of the 630 speakers, 578 were identified as White, 26 as Black, 2 as
American Indian, 2 as Spanish-American, 3 as Oriental, and 17 as unknown.

Table 1: Demographic information about the TIMIT speakers

Male Female Total (%)

White 402 176 578 (91.7%)
Black 15 11 26 (4.1%)
American Indian 2 0 2 (0.3%)
Spanish-American 2 0 2 (0.3%)
Oriental 3 0 3 (0.5%)
Unknown 12 5 17 (2.6%)

The documentation notes:

In addition to these 630 speakers, a small number of speakers with
foreign accents or other extreme speech and/or hearing abnormalities
were recorded as “auxiliary” subjects, but they are not included on the
CD-ROM.

It comes to no surprise that early speech recognition models had significant
demographic and racial biases in their performance.

Today, several major companies, including Amazon, Apple, Google, and Mi-
crosoft, all use speech recognition models in a variety of products from cell phone
apps to voice assistants. There is no longer a major open benchmark that would
support training models competitive with the industrial counterparts. Indus-
trial speech recognition pipelines are generally complex and use proprietary data
sources that we don’t know a lot about. Nevertheless, today’s speech recognition
systems continue to exhibit performance disparities along racial lines.6

UCI Machine Learning Repository

The UCI Machine Learning Repository currently hosts more than 500 datasets,
mostly for different classification and regression tasks. Most datasets are relatively
small, consisting of a few hundred or a few thousand instances. The majority are
structured tabular data sets with a handful or a few tens of attributes.

The UCI Machine Learning Repository contributed to the adoption of the
train-test paradigm in machine learning in the late 1980s. Pat Langley recalls:
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The experimental movement was aided by another development. David
Aha, then a PhD student at UCI, began to collect data sets for use in
empirical studies of machine learning. This grew into the UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml/), which he made
available to the community by FTP in 1987. This was rapidly adopted
by many researchers because it was easy to use and because it let them
compare their results to previous findings on the same tasks.7

The most popular dataset in the repository is the Iris Data Set containing
taxonomic measurements of 150 iris flowers, 50 from each of 3 species. The task is
to classify the species given the measurements.

As of October 2020, the second most popular dataset in the UCI repository is the
Adult dataset. Extracted from the 1994 Census database, it features nearly 50,000

instances describing individuals in the United States, each having 14 attributes. The
task is to classify whether an individual earns more than 50,000 US dollars or less.
The Adult dataset remains popular in the algorithmic fairness community, largely
because it is one of the few publicly available datasets that features demographic
information including gender (coded in binary as male/female), as well as race
(coded as Amer-Indian-Eskimo, Asian-Pac-Islander, Black, Other, and White).

Unfortunately, the data has some idiosyncrasies that make it less than ideal for
understanding biases in machine learning models. Due to the age of the data, and
the income cutoff at $50,000, almost all instances labeled Black are below the cutoff,
as are almost all instances labeled female. Indeed, a standard logistic regression
model trained on the data achieves about 85% accuracy overall, while the same
model achieves 91% accuracy on Black instances, and nearly 93% accuracy on
female instances. Likewise, the ROC curves for the latter two groups enclose
actually more area than the ROC curve for male instances. This is an atypical
situation: more often, machine learning models perform worse on historically
disadvantaged groups.

MNIST

The MNIST dataset contains images of handwritten digits. Its most common
version has 60,000 training images and 10,000 test images, each having 28x28 black
and white pixels.

MNIST was created by researchers Burges, Cortes, and Lecun from an earlier
dataset released by the National Institute of Standards and Technology (NIST).
The dataset was introduced in a research paper in 1998 to showcase the use of
gradient-based deep learning methods for document recognition tasks.8 Since
then cited over 30,000 times, MNIST became a highly influential benchmark in the
computer vision community. Two decades later, researchers continue to use the
data actively.

The original NIST data had the property that training and test data came from
two different populations. The former featured the handwriting of two thousand
American Census Bureau employees, whereas the latter came from five hundred
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Figure 1: A sample of MNIST digits

American high school students.9 The creators of MNIST reshuffled these two
data sources and split them into training and test set. Moreover, they scaled and
centered the digits. The exact procedure to derive MNIST from NIST was lost, but
recently reconstructed by matching images from both data sources.10

The original MNIST test set was of the same size as the training set, but the
smaller test set became standard in research use. The 50,000 digits in the original
test set that didn’t make it into the smaller test set were later identified and dubbed
the lost digits.10

From the beginning, MNIST was intended to be a benchmark used to compare
the strengths of different methods. For several years, LeCun maintained an informal
leaderboard on a personal website that listed the best accuracy numbers that
different learning algorithms achieved on MNIST.

Table 2: A snapshot of the original MNIST leaderboard
from February 2, 1999. Source: Internet Archive (Retrieved:
December 4, 2020)

Method Test error (%)

linear classifier (1-layer NN) 12.0
linear classifier (1-layer NN) [deskewing] 8.4
pairwise linear classifier 7.6
K-nearest-neighbors, Euclidean 5.0
K-nearest-neighbors, Euclidean, deskewed 2.4
40 PCA + quadratic classifier 3.3
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Method Test error (%)

1000 RBF + linear classifier 3.6
K-NN, Tangent Distance, 16x16 1.1
SVM deg 4 polynomial 1.1
Reduced Set SVM deg 5 polynomial 1.0
Virtual SVM deg 9 poly [distortions] 0.8
2-layer NN, 300 hidden units 4.7
2-layer NN, 300 HU, [distortions] 3.6
2-layer NN, 300 HU, [deskewing] 1.6
2-layer NN, 1000 hidden units 4.5
2-layer NN, 1000 HU, [distortions] 3.8
3-layer NN, 300+100 hidden units 3.05

3-layer NN, 300+100 HU [distortions] 2.5
3-layer NN, 500+150 hidden units 2.95

3-layer NN, 500+150 HU [distortions] 2.45

LeNet-1 [with 16x16 input] 1.7
LeNet-4 1.1
LeNet-4 with K-NN instead of last layer 1.1
LeNet-4 with local learning instead of ll 1.1
LeNet-5, [no distortions] 0.95

LeNet-5, [huge distortions] 0.85

LeNet-5, [distortions] 0.8
Boosted LeNet-4, [distortions] 0.7

In its capacity as a benchmark, it became a showcase for the emerging kernel
methods of the early 2000s that temporarily achieved top performance on MNIST.11

Today, it is not difficult to achieve less than 0.5% classification error with a wide
range of convolutional neural network architectures. The best models classify
all but a few pathological test instances correctly. As a result, MNIST is widely
considered too easy for today’s research tasks.

MNIST wasn’t the first dataset of handwritten digits in use for machine learning
research. Earlier, the US Postal Service (USPS) had released a dataset of 9298 images
(7291 for training, and 2007 for testing). The USPS data was actually a fair bit
harder to classify than MNIST. A non-negligible fraction of the USPS digits look
unrecognizable to humans,12 whereas humans recognize essentially all digits in
MNIST.

ImageNet

ImageNet is a large repository of labeled images that has been highly influential
in computer vision research over the last decade. The image labels correspond
to nouns from the WordNet lexical database of the English language.13 WordNet
groups nouns into cognitive synonyms, called synsets. The words car and automobile,
for example, would fall into the same synset. On top of these categories WordNet
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provides a hierarchical tree structure according to a super-subordinate relationship
between synsets. The synset for chair, for example, is a child of the synset for
furniture in the wordnet hierarchy. WordNet existed before ImageNet and in part
inspired the creation of Imagenet.

The initial release of ImageNet included about 5000 image categories, each
corresponding to a synset in WordNet. These ImageNet categories averaged about
600 images per category.14 ImageNet grew over time and its Fall 2011 release had
reached about 32,000 categories.

The construction of ImageNet required two essential steps: retrieving candidate
images for each synset, and labeling the retrieved images. This first step utilized
online search engines and photo sharing platforms with a search interface, specifi-
cally, Flickr. Candidate images were taken from the image search results associated
with the synset nouns for each category.

For the second labeling step, the creators of ImageNet turned to Amazon’s
Mechanical Turk platform (MTurk). MTurk is an online labor market that allows
individuals and corporations to hire on-demand workers to perform simple tasks.
In this case, MTurk workers were presented with candidate images and had to
decide whether or not the candidate image was indeed an image corresponding to
the category that it was putatively associated with.

It is important to distinguish between this ImageNet database and a popular
machine learning benchmark and competition, called ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), that was derived from it.15 The competition
was organized yearly from 2010 until 2017, reaching significant notoriety in both
industry and academia, especially as a benchmark for emerging deep learning
models.

When machine learning practitioners say “ImageNet” they typically refer to
the data used for the image classification task in the 2012 ILSVRC benchmark. The
competition included other tasks, such as object recognition, but image classification
has become the most popular task for the dataset. Expressions such as “a model
trained on ImageNet” typically refer to training an image classification model on
the benchmark data set from 2012.

Another common practice involving the ILSVRC data is pre-training. Often a
practitioner has a specific classification problem in mind whose label set differs
from the 1000 classes present in the data. It’s possible nonetheless to use the data
to create useful features that can then be used in the target classification problem.
Where ILSVRC enters real-world applications it’s often to support pre-training.

This colloquial use of the word ImageNet can lead to some confusion, not least
because the ILSVRC-2012 dataset differs significantly from the broader database. It
only includes a subset of 1000 categories. Moreover, these categories are a rather
skewed subset of the broader ImageNet hierarchy. For example, of these 1000

categories only three are in the person branch of the WordNet hierarchy, specifically,
groom, baseball player, and scuba diver. Yet, more than 100 of the 1000 categories
correspond to different dog breeds. The number is 118, to be exact, not counting
wolves, foxes, and wild dogs that are also present among the 1000 categories.

What motivated the exact choice of these 1000 categories is not entirely clear.
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The apparent canine inclination, however, isn’t just a quirk either. At the time,
there was an interest in the computer vision community in making progress on
prediction with many classes, some of which are very similar. This reflects a
broader pattern in the machine learning community. The creation of datasets is
often driven by an intuitive sense of what the technical challenges are for the field.
In the case of ImageNet, another important consideration was scale, both in terms
of the number of images and the number of classes.

The large scale annotation and labeling that went into Imagenet falls into a
category of labor that Gray and Suri call ghost work in their book of the same
name.16 They point out:

MTurk workers are the AI revolution’s unsung heroes.

Indeed, ImageNet was labeled by about 49,000 MTurk workers from 167 coun-
tries over the course of multiple years.

The Netflix Prize

The Netflix Prize was one of the most famous machine learning competitions.
Starting on October 2, 2006, the competition ran for nearly three years ending
with a grand prize of $1M, announced on September 18, 2009. Over the years, the
competition saw 44,014 submissions from 5169 teams.

The Netflix training data contained roughly 100 million movie ratings from
nearly 500 thousand Netflix subscribers on a set of 17770 movies. Each data point
corresponds to a tuple <user, movie, date of rating, rating>. At about 650

megabytes in size, the dataset was just small enough to fit on a CD-ROM, but large
enough to be pose a challenge at the time.

The Netflix data can be thought of as a matrix with n = 480189 rows and m =
17770 columns. Each row corresponds to a Netflix subscriber and each column to a
movie. The only entries present in the matrix are those for which a given subscriber
rated a given movie with rating in {1, 2, 3, 4, 5}. All other entries—that is, the vast
majority—are missing. The objective of the participants was to predict the missing
entries of the matrix, a problem known as matrix completion, or collaborative
filtering somewhat more broadly. In fact, the Netflix challenge did so much to
popularize this problem that it is sometimes called the Netflix problem. The idea is
that if we could predict missing entries, we’d be able to recommend unseen movies
to users accordingly.

The hold out data that Netflix kept secret consisted of about three million
ratings. Half of them were used to compute a running leaderboard throughout the
competition. The other half determined the final winner.

The Netflix competition was hugely influential. Not only did it attract signifi-
cant participation, it also fueled much academic interest in collaborative filtering
for years to come. Moreover, it popularized the competition format as an appealing
way for companies to engage with the machine learning community. A startup
called Kaggle, founded in April 2010, organized hundreds of machine learning
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competitions for various companies and organizations before its acquisition by
Google in 2017.

But the Netflix competition became infamous for another reason. Although Net-
flix had replaced usernames by pseudonymous numbers, researchers Narayanan
and Shmatikov were able to re-identify some of the Netflix subscribers whose
movie ratings were in the dataset17 by linking those ratings with publicly available
movie ratings on IMDB, an online movie database. Some Netflix subscribers had
also publicly rated an overlapping set of movies on IMDB under their real identities.
In the privacy literature, this is called a linkage attack and it’s one of the ways that
seemingly anonymized data can be de-anonymized.18

What followed were multiple class action lawsuits against Netflix, as well as an
inquiry by the Federal Trade Commission over privacy concerns. As a consequence,
Netflix canceled plans for a second competition, which it had announced on August
6, 2009.

To this day, privacy concerns are a legitimate obstacle to public data release
and dataset creation. Deanonymization techniques are mature and efficient. There
provably is no algorithm that could take a dataset and provide a rigorous privacy
guarantee to all participants, while being useful for all analyses and machine
learning purposes. Dwork and Roth call this the Fundamental Law of Information
Recovery: “overly accurate answers to too many questions will destroy privacy in a
spectacular way.”19

Roles datasets play

In machine learning research and engineering, datasets play a different and more
prominent set of roles than they do in most other fields. We have mentioned several
of these above but let us now examine them in more detail. Understanding these
is critical to figuring out which technical and cultural aspects of benchmarks are
essential, how harms arise, and how to mitigate them.

A source of real data

Edgar Anderson was a botanist and horticulturist who spent much of the 1920s
and ’30s collecting and analyzing data on Irises to study biological and taxonomic
questions. The Iris dataset in the UCI machine learning repository mentioned
above is the result of Anderson’s labors — or a tiny sliver of them, as most of
the observations in the dataset came from a single day of field work. The dataset
contains 50 observations each of 3 iris plants; the task is to distinguish the species
based on 4 physical attributes (sepal length and width; petal length and width).
Most of the tens of thousands of researchers who have used this dataset are not
interested in taxonomy, let alone irises. What, then, are they using the dataset for?

Although the data was collected by Anderson, it was actually published in the
paper “The use of multiple measurements in taxonomic problems” by Ronald Fisher,
who was a founder of modern statistics as well as a eugenicist.20 The eugenics
connection is not accidental: other central figures in the development of modern
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statistics such as Francis Galton and Karl Pearson were algo eugenicists.21, 22 Fisher
was Anderson’s collaborator. Although Fisher had some interest in taxonomy, he
was primarily interested in using the data to develop statistical techniques (with an
eye toward applications for eugenics). In the 1936 paper, Fisher introduces Linear
Discriminant Analysis (LDA) and shows that it performs well on this task.

The reason the Iris dataset proved to be a good application of LDA is that
there exists a linear projection of the four features which seems to result in a
mixture of Gaussians (one for each of the three species), and the means of the three
distributions are relatively far apart; one of the species is in fact perfectly separable
from the other two. Every learning algorithm implicitly makes assumptions about
the data-generating process: without assumptions, there is no basis for making
predictions on unseen points.23 If we could perfectly mathematically describe
the data generating process behind the physical characteristics of irises (or any
other population), we wouldn’t need a dataset — we could mathematically work
out how well an algorithm would perform. In practice, for complex phenomena,
such perfect mathematical descriptions rarely exist. Different communities place
different value on attempting to discover the true data generating process. Machine
learning places relatively little emphasis on this goal.24 Ultimately, the usefulness
of a learning algorithm is established by testing it on real datasets.

The reliance on benchmark datasets as a source of real data was a gradual
development in machine learning research. For example, Rosenblatt’s perceptron
experiments in the 1950s used two artificial stimuli (the characters E and X), with
numerous variants of each created by rotation and other transformations.25 The
controlled input was considered useful to understand the behavior of the system.
Writing in 1988, Pat Langley advocates for a hybrid approach, pointing out that
“successful runs on a number of different natural domains provide evidence of
generality” but also highlighting the use of artificial data for better understanding.26

Especially after the establishment of the UCI repository around this time, it has
become common to evaluate new algorithms on widely-used benchmark datasets
as a way of establishing that the researcher is not “cheating” by picking contrived
inputs.

To summarize, when a researcher seeks to present evidence that an algorithmic
innovation is useful, the use of real dataset as opposed to artificial data ensures
that the researcher didn’t make up data to suit the algorithm. Further, the use of
prominent benchmark datasets wards off skepticism that the researcher may have
cherry picked a dataset with specific properties that makes the algorithm effective.
Finally, the use of multiple benchmark datasets from different domains suggests
that the algorithm is highly general.

Perversely, domain ignorance is treated almost as a virtue rather than a draw-
back. For example, researchers who achieve state-of-the-art performance on (say)
Chinese-to-English translation may point out that none of them speak Chinese.
The subtext is that they couldn’t have knowingly or unknowingly picked a model
that works well only when the source language is linguistically similar to Chinese.
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A catalyst and measure of domain-specific progress

Algorithmic innovations that are highly portable across domains, while important,
are rare. Much of the progress in machine learning is instead tailored to specific
domains and problems. The most common way to demonstrate such progress is
to show that the innovation in question can be used to achieve “state of the art”
performance on a benchmark dataset for that task.

The idea that datasets spur algorithmic innovation bears some explanation. For
example, the Netflix Prize is commonly credited as responsible for the discovery of
the effectiveness of matrix factorization in recommender systems (often attributed
to Simon Funk, a pseudonymous contestant27). Yet, the technique had been
proposed in the context of movie recommendation as early as 1998

28 and for search
as early as 1990.29 However, it was not previously apparent that it outperformed
neighborhood-based methods and that it could discover meaningful latent factors.
The clarity of the Netflix leaderboard and the credibility of the dataset helped
establish the significance of matrix factorization.30

Somewhat separately from the role of spurring algorithmic innovation, bench-
mark datasets also offer a convenient way to measure its results (hence the term
benchmark). The progression of state-of-the-art accuracy on a benchmark dataset
and task can be a useful indicator. A relatively flat curve of accuracy over time
may indicate that progress has stalled, while a discontinuous jump may indicate a
breakthrough. Reaching an error rate that is close to zero or at least lower than
the “human error” for perception tasks is often considered a sign that the task is
“solved” and that it is time for the community to move on to a harder challenge.

While these are appealing heuristics, there are also pitfalls. In particular, a
statement such as “the state of the art accuracy for image classification is 95%” is
not a scientifically meaningful claim that can be assigned a truth value, because
the number is highly sensitive to the data distribution.

A notable illustration of this phenomenon comes from a paper by Recht, Roelofs,
Schmidt, and Shankar. They carefully recreated new test sets for the CIFAR-10

and ImageNet classification benchmarks according to the very same procedure as
the original test sets.31 They then took a large collection of representative models
proposed over the years and evaluated all of them on the new test sets. All models
suffered a significant drop in performance on the new test set, corresponding to
about 5 years of progress in image classification. They found that this is because
the new test set represents a slightly different distribution. This is despite the
researchers’ careful efforts to replicate the data collection procedure; we should
expect that test sets created by different procedures should result in much greater
performance differences.

The same graphs also provide a striking illustration of why benchmark datasets
are a practical necessity for performance comparison in machine learning. Consider
a hypothetical alternative approach analogous to the norm in many other branches
of science: a researcher evaluating a claim (algorithm) describes in detail their
procedure for sampling the data; other researchers working on the same problem
sample their own datasets based on the published procedure. Some reuse of

11



Figure 2: Model accuracy on the original test sets vs. new test sets for CIFAR-10 and
ImageNet. Each data point corresponds to one model in a test bed of representative
models (shown with 95% Clopper-Pearson confidence intervals). The plots reveal
two main phenomena: (i) There is generally a significant drop in accuracy from
the original to the new test sets. (ii) The model accuracies closely follow a linear
function, meaning that models that perform well on the old test set also tend to
perform well on the new test set. The narrow shaded region is a 95% confidence
region for the linear fit.

datasets occurs, but there is no standardization. The graphs show that even
extremely careful efforts to sample a new dataset from the same distribution would
shift the distribution sufficiently to make performance comparison hopeless.

In other words, reported accuracy figures from benchmark datasets do not
constitute generalizable scientific knowledge, because they don’t have external
validity beyond the specific dataset. While the Recht et al. paper is limited to
image classification, it seems scientifically prudent to assume a lack of external
validity for other machine learning tasks as well, unless there is evidence to the
contrary. Yet the two graphs above hint at a different type of knowledge that
seems to transfer almost perfectly to the new test set: the relative performance of
models. Indeed, another paper showed evidence that relative performance is stable
on many datasets across a much wider range of distribution shifts, with strong
correlations between in-domain and out-of-domain performance.32

The relative performance of models for a given task is a very useful type of
practitioner-oriented knowledge that can be gained from benchmark leaderboards.
A question that practitioners often face is, “which class of models should I use for
[given task] and how should I optimize it”? A benchmark dataset (together with
the associated task definition) can be seen as a proxy for answering this question in
a constrained setting, analogous to laboratory studies in other branches of science.
The hope is that algorithms (and model classes or architectures) identified as state
of the art based on benchmark evaluation are also the ones that will be effective on
the practitioner’s test set. In other words, practitioners can outsource the laborious
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task of model selection to the benchmark leaderboard.
To be clear, this is an oversimplification. Practitioners have many concerns

in addition to accuracy such as the computational cost (of both training and
prediction), interpretability, and, increasingly, fairness and environmental cost.
Thus, benchmark performance is useful to practitioners but far from the only
consideration for model selection.

We can imagine a spectrum of how similar the new test set is to the benchmark
set. At the one extreme, if the new test set is truly a new sample from the exact
same distribution, then the ranking of model classes should be the same for the
two sets. At the other extreme, the distributions may be so different that they
constitute essentially different tasks, so that performance on one is not a useful
guide to performance on the other. In between these extremes is a big grey area
that is not well understood, and it is currently more art than science.

The lack of clarity on how much we can generalize from one or a few bench-
marks is associated with well known controversies. For example, support vector
machines were competitive with neural networks on earlier-generation benchmarks
such as NIST digit recognition,33 which was one reason why interest in neural
networks dwindled in the 1990s. The clear superiority of neural networks on newer
benchmarks such as ImageNet was only belatedly recognized.1

A source of (pre-)training data

Above, we have envisioned that practitioners use the benchmark leaderboard as a
guide to model selection but then train the selected models from scratch on their
own (often proprietary) data sources. But practitioners often can and do go further.

In some cases, it may be possible to train on a benchmark dataset and directly
use the resulting model in one’s application. This depends on the domain and
the task, and is more suitable when the distribution shift is minimal and the set
of class labels is stable. For example, it is reasonable to deploy a digit recognizer
pretrained on MNIST, but not so much an image classifier pretrained on ILSVRC
(without some type of adaptation to the target domain). Indeed, ILSVRC consists
of a rather arbitrary subset of 1,000 classes of ImageNet, and a pretrained model
is correspondingly limited in the set of labels it is able to output. The ImageNet
Roulette project was a telling demonstration of what happens when a model
trained on the (full) ImageNet dataset is applied to a different test distribution,
one consisting primarily of images of people. The results were grotesque. The
demonstration has been discontinued, but many archived results may be found in
articles about the project.35 Finally, consider a recommendation system benchmark
dataset. There is no way to even attempt to use it directly as training data because
the users about whom one wants to make predictions are highly unlikely to be
present in the training set.

In most cases, the creators of benchmark datasets do not intend them to be used
as a source of training data, although benchmark datasets are often misused for

1The difficulty of ascertaining the extent to which a study’s findings generalize beyond the studied
population bedevils all of the statistical sciences. See, for instance.34
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this purpose. A rare exception is The Pile: a large (800 GB) English text corpus that
is explicitly targeted at training language models. To improve the generalization
capabilities of models trained on this corpus, the authors included diverse text
from 22 different sources.36

Even when benchmark datasets are not useful as training data for the above-
mentioned reasons, they can be useful as pre-training data for transfer learning.
Transfer learning refers to using an existing model as a starting point for building a
new model. A new model may be needed because the data distribution has shifted
compared to what the existing model was optimized for, or because it aims to
solve a different task altogether. For example, a model pre-trained on ImageNet
(or ILSVRC) may be adapted via further training for recognizing different species
(distribution shift) or as part of an image captioning model (a different task).

There are different intuitions to explain why transfer learning is often effective.
One is that the final layers of a neural network correspond to semantically high-level
representations of the input. Pre-training is a way of learning these representations
that tend to be useful for many tasks. Another intuition is that pre-training is a
way of initializing weights that offers an improvement over random initialization
in that it requires fewer samples from the target domain for convergence.

Pretraining offers the practical benefit of being able to share the knowledge
contained in a dataset without releasing the raw data. Many datasets, especially
those created by companies using customer data, cannot be published due to
privacy or confidentiality concerns. The release of pretrained models is thus an
important avenue of knowledge sharing from industry to academia. Sharing
pretrained models is also helpful to users for whom training from scratch is cost
prohibitive. However, privacy and data protection concerns surface in the context
of sharing pretrained models due to the possibility that personal data used for
training can be recontructed from the pretrained model.37

Let’s wrap up our analysis of the roles of benchmark datasets. We identified six
distinct roles: (1) providing data sampled from real-world occurring distributions
that enables largely domain-agnostic investigations of learning algorithms; (2)
enabling domain-specific progress by providing datasets that are representative of
real-world tasks in that domain yet abstract away unnecessary detail; (3) providing
a convenient albeit crude numerical way to track scientific progress on a problem;
(4) enabling model comparison and allowing practitioners to outsource model
selection to public leaderboards; (5) providing a source of pre-training data for
representation learning, weight initialization, etc; (6) providing a source of training
data. The progression of these six roles is generally toward increasing domain- and
task-specificity, and from science-oriented to practice-oriented.

The scientific basis of machine learning benchmarks

Now we examine a seeming mystery: whether and why the benchmark approach
works despite the practice of repeated testing on the same data.

Methodologically, much of modern machine learning practice rests on a variant
of trial and error, which we call the train-test paradigm. Practitioners repeatedly
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build models using any number of heuristics and test their performance to see what
works. Anything goes as far as training is concerned, subject only to computational
constraints, so long as the performance looks good in testing. Trial and error is
sound so long as the testing protocol is robust enough to absorb the pressure
placed on it. We will examine to what extent this is the case in machine learning.

From a theoretical perspective, the best way to test the performance of a
classifier is to collect a sufficiently large fresh dataset and to compute the average
error on that test set. Data collection, however, is a difficult and costly task. In most
applications, practitioners cannot sample fresh data for each model they would
like to try out. A different practice has therefore become the de-facto standard.
Practitioners split their dataset into typically two parts, a training set used for
training a model, and a test set used for evaluating its performance.2 Often the
split is determined when the dataset is created. Datasets used for benchmarks in
particular have one fixed split persistent throughout time. A number of variations
on this theme go under the name holdout method.

Machine learning competitions have adopted the same format. The company
Kaggle, for example, has organized hundreds of competitions since it was founded.
In a competition, a holdout set is kept secret and is used to rank participants on
a public leaderboard as the competition unfolds. In the end, the final winner is
whoever scores highest on a separate secret test set not used to that point.

In all applications of the holdout method the hope is that the test set will serve
as a fresh sample that provides good performance estimates for all the models. The
central problem is that practitioners don’t just use the test data once only to retire
it immediately thereafter. The test data are used incrementally for building one
model at a time while incorporating feedback received previously from the test
data. This leads to the fear that eventually models begin to overfit to the test data.
This type of overfitting is sometimes called adaptive overfitting or human-in-the-loop
overfitting.

Duda, Hart, and Stork summarize the problem aptly in their 1973 textbook:38

In the early work on pattern recognition, when experiments were often
done with very small numbers of samples, the same data were often
used for designing and testing the classifier. This mistake is frequently
referred to as “testing on the training data.” A related but less obvious
problem arises when a classifier undergoes a long series of refinements
guided by the results of repeated testing on the same data. This form
of “training on the testing data” often escapes attention until new test
samples are obtained.

Nearly half a century later, Hastie, Tibshirani, and Friedman still caution in the
2017 edition of their influential textbook:39

Ideally, the test set should be kept in a “vault,” and be brought out only
at the end of the data analysis. Suppose instead that we use the test-set

2Sometimes practitioners divide their data into multiple splits, e.g., training, validation, and test
sets. However, for our discussion here that won’t be necessary.
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repeatedly, choosing the model with smallest test-set error. Then the
test set error of the final chosen model will underestimate the true test
error, sometimes substantially.

While the suggestion to keep the test data in a “vault” is safe, it couldn’t be
further from the reality of modern practice. Popular test datasets often see tens of
thousands of evaluations.

Yet adaptive overfitting doesn’t seem to be happening. Recall the scatter plots
by Recht et al. above: the plots admit a clean linear fit with positive slope. In other
words, the better a model is on the old test set, the better it is on the new test set.
But notice that newer models, i.e., those with higher performance on the original
test set, had more time to adapt to the test set and to incorporate more information
about it. Nonetheless, the better a model performed on the old test set the better
it performs on the new set. Moreover, on CIFAR-10 we even see clearly that the
absolute performance drops diminishes with increasing accuracy on the old test
set. In particular, if our goal was to do well on the new test set, seemingly our best
strategy is to continue to inch forward on the old test set.

The theoretical understanding of why machine learning practice has not re-
sulted in overfitting is still catching up. Here, we highlight one of many potential
explanations, called the leaderboard principle. It is a subtle effect in which publica-
tion biases force researchers to chase state-of-the-art results, and they only publish
models if they see significant improvements over prior models. This cultural prac-
tice can be formalized by Blum & Hardt’s Ladder algorithm. For each given classifier,
it compares the classifier’s holdout error to the previously smallest holdout error
achieved by any classifier encountered so far. If the error is below the previous best
by some margin, it announces the holdout error of the current classifier and notes
it as the best seen so far. Importantly, if the error is not smaller by a margin, the
algorithm releases the previous best (rather than the new error). It can be proven
that the Ladder algorithm avoids overfitting in the sense that it accurately measures
the error of the best performing classifier among those encountered.40

Benchmark praxis and culture

The above discussion hints at the importance of cultural practices for a full un-
derstanding of benchmark datasets. Let us now discuss these in more detail,
highlighting both dataset creators and users. These practices have helped make
the benchmark-oriented approach successful but also impact the harms associated
with data. Let’s start with creators.

Benchmark creators define the task. This involves, among other things, selecting
the high-level problem, defining the target variable, the procedure for sampling
the data, and the scoring function. If manual annotation of the data is necessary,
the dataset creator must develop a codebook or rubric for doing so and orchestrate
crowd-work if needed. Data cleaning to ensure high-quality labels is usually
required.

In defining the task, benchmark developers navigate a tricky balance: a task
that is seen as too easy using existing techniques will not spur innovation while a
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task that is seen as too hard may be demotivating. Finding the sweet spot requires
expertise, judgment, and some luck. If the right balance is achieved, the benchmark
drives progress on the problem. In this way, benchmark creators play an outsized
role in defining the vision and agenda for machine learning communities. The
selection of tasks in benchmarks is known to affect the ranking of models, which
influences and biases the direction of progress in the community.41 This effect may
be getting more pronounced over time due to increasing concentration on fewer
datasets.42

As an example of the kinds of decisions benchmark developers must make, and
how they influence the direction of research, consider MNIST. As discussed above,
it was derived from a previous dataset released by NIST in which the training and
test set were drawn from different sources, but MNIST eliminated this distribution
shift. The MNIST creators argued that this was necessary because

Drawing sensible conclusions from learning experiments requires that
the result be independent of the choice of training set and test among
the complete set of samples.

In other words, if an algorithm performs well on NIST it is unclear how much
of this due to its ability to learn the training distribution and how much of it is
due to its ability to ignore the differences between the train and test distributions.
MNIST allows researchers to focus selectively on the former question. This was a
fruitful approach in 1995. Decades later, when problems like MNIST classification
are effectively solved, the attention of benchmark dataset creators has turned
towards methods for handling distribution shift that LeCun et al. justifiably chose
to ignore.43

Another tricky balance is between abstracting away domain details so that
the task is approachable for a broad swath of machine learning experts, and
preserving enough details so that the methods that work in the benchmark setting
will translate to production settings. One reason the Netflix Prize was so popular is
because the data is just a matrix, and it is possible to achieve good performance (in
the sense of beating Netflix’s baseline) without really thinking about what the data
means. No understanding of film or user psychology was necessary — or helpful,
as it turned out. It is possible that domain expertise would have proved essential if
the problem had been formulated differently — say, to require explainability or
emphasize good performance even for users with very few previous ratings.

Another challenge for dataset creators is to avoid leakage. In an apocryphal
story from the early days of computer vision, a classifier was trained to discriminate
between images of Russian and American tanks with seemingly high accuracy, but
it turned out that this was only because the Russian tanks had been photographed
on a cloudy day and the American ones on a sunny day.44 Data leakage refers to a
spurious relationship between the feature vector and the target variable that is an
artifact of the data collection or sampling strategy. Since the spurious relationship
won’t be present when the model is deployed, leakage usually leads to inflated
estimates of model performance. Kaufman et al. present an overview of leakage in
machine learning.45
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Yet another critical responsibility of benchmark dataset creators is to implement
a train-test framework. Most contests have various restrictions in place in an
attempt to prevent both accidental overfitting to the leaderboard test set and
intentional reverse engineering. Although, as we described above, benchmark
praxis differs from the textbook version of the holdout method, practitioners have
arrived at a set of techniques that have worked in practice, even if our theoretical
understanding of why they work is still catching up.

Taking a step back, in any scientific endeavor there are the difficult tasks of
framing the problem, ensuring that the methods have internal and external validity,
and interpreting the results. Benchmark dataset creators handle as many of these
hard tasks as possible, simplifying the goal of dataset users to the point where if a
researcher beats the state-of-the-art performance, there is a good chance that there
is a scientific insight somewhere in the methods, although extracting what this
insight is may still require work. Further simplifying things for dataset users is the
fact that there are no restrictions other than computational constraints on how the
researcher uses the training data, as long as performance on the test set looks good.

To be clear, this approach has many pitfalls. Researchers rarely perform the
statistical hypothesis tests needed to have confidence in the claim that one model
performs better than another.46 Our understanding of how to account for the
numerous sources of variance in these performance measurements is still evolving;
a 2021 paper that aims to do so argues that many of the claims of State-of-the-Art
performance in natural language performance and computer vision don’t hold up
when subjected to such tests.47

There have long been articles noting the limitations of what researchers and
practitioners can learn from benchmark performance evaluation.48, 49 David Aha,
co-creator of the UCI repository, recalls that these limitations were well understood
as early as 1995, just a few years after the repository was established.50

While it is important to acknowledge the limitations, it is also worth highlight-
ing that this approach works at all. One reason for this success is that the scientific
questions are primarily about algorithms and not the populations that the datasets
are sampled from.

Indeed, there is a case to be made that other scientific communities should adopt
the machine learning community’s approach, sometimes called the Common Task
Method.2 Diverse scientific fields including economics, political science, psychology,
genetics, and many others have seen an infusion of machine learning methods
alongside a new focus on maximizing predictive accuracy as a research objective.
These shifts have been accompanied by a rash of reproducibility failures, with large
fractions of published papers falling prey to pitfalls such as data leakage.51 Use of
the benchmark dataset approach could have avoided most of these pitfalls.

Now let us transition to dataset users. Benchmark users have embraced the
freedom afforded by the approach. As a result, the community of users is large —
for example, the data science platform Kaggle has over 5 million registered users
of whom over 130,000 have participated in a competition. There is less gatekeeping
in machine learning research than in other disciplines. Many prominent findings
bypass peer review. If a technique performs well on the leaderboard, that is
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considered to speak for itself. Many people who contribute these findings are not
formally affiliated with research institutions.

Overall, the culture of progress in machine learning combines the culture
of academic scholarship, engineering, and even gaming, with a community of
hobbyists and practitioners sharing tips and tricks on forums and engaging in
friendly competition. This freewheeling culture may seem jarring to some observers,
especially given the sensitivity of some of the datasets involved. The lack of
gatekeeping means fewer opportunities for ethical training.

There is another aspect of benchmark culture that amplifies the harms associated
with data: collecting data without informed consent and distributing it widely
without adequate context. Many modern datasets, especially in computer vision
and natural language processing, are scraped from the web. In such cases, it is
infeasible to obtain informed consent from the individual authors of the content.
What about a dataset such as the Netflix Prize where a company releases data from
its own platform? Even if companies disclose in their terms of service that data
might be used for research, it is doubtful that informed consent has been obtained
since few users read and understand Terms of Service documents and because of
the complexity of the issues involved.

When an individual’s data becomes part of a benchmark dataset, it gets dis-
tributed widely. Popular benchmark datasets are downloaded by thousands of
researchers, students, developers, and hobbyists. Scientific norms also call for the
data to be preserved indefinitely in the interest of transparency and reproducibility.
Thus, not only might individual pieces of data in these datasets be distributed and
viewed widely, they are viewed in a form that strips them of their original context.
A joke in bad taste written on social media and later deleted may be captured
alongside documents from the library of congress.

Harms associated with data

Now we will discuss a few important types of harms associated with benchmark
datasets and how to mitigate them. We don’t mean to imply that all of these harms
are the “fault” of dataset creators, but understanding how data plays into these
harms will bring clarity on how to intervene.

Downstream and representational harms

A dataset’s downstream harms are those that arise from the models trained on
it. This is a type of harm that readily comes to mind: bad data may lead to bad
models which can cause harm to the people they purportedly serve. For instance,
biased criminal risk prediction systems disproportionately harm Black, minority,
and overpoliced populations among others.

Properties of datasets that sometimes (but not always, and not in easily pre-
dictable ways) propagate downstream include imbalance, biases, stereotypes, and
categorization. By imbalance we mean unequal representation of different groups.
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For example, Buolamwini and Gebru pointed out that two facial analysis bench-
marks, IJB-A and Adience, overwhelmingly featured lighter-skinned subjects.52 By
dataset biases we mean incorrect associations, especially those corresponding to
social and historical prejudices. For example, a dataset that measures arrests as
a proxy for crime may reflect the biases of policing and discriminatory laws. By
stereotypes we mean associations that accurately reflect a property of the world
(or a specific culture at a specific point in time) that is thought to be the result of
social and historical prejudice. For example, gender-occupation associations can
be called stereotypes. By categorization we mean assigning discrete (often binary)
labels to complex aspects of identity such as gender and race.

Representational harms occur when systems reinforce the subordination of
some groups along the lines of identity. Representational harms could be down-
stream harms — such as when models apply offensive labels to people from
some groups — but they could be inherent in the dataset. For example, Ima-
geNet contains numerous slurs and offensive labels inherited from WordNet and
pornographic images of people who did not consent to their inclusion in the
dataset.53, 54

While downstream and representational harms are two categories that have
drawn a lot of attention and criticism, there are many other harms that often
arise including the environmental cost of training models on unnecessarily large
datasets55 and the erasure of the labor of subjects who contributed the data50 or
the annotators who labeled it.16 For an overview of ethical concerns associated
with datasets, see the survey by Paullada et al.56

Mitigating harms: an overview

Approaches for mitigating the harms associated with data are quickly developing.
Here we review a few selected ideas.

One approach targets the fact that many machine learning datasets are poorly
documented, and details about their creation are often missing. This leads to
a range of issues from lack of reproducibility and concerns of scientific validity
to misuse and ethical concerns. In response, datasheets for datasets is a template
and initiative by Gebru et al. to promote more detailed and systematic annotation
for datasets.57 A datasheet requires the creator of a dataset to answer questions
relating to several areas of interest: Motivation, composition, collection process,
preprocessing/cleaning/labeling, uses, distribution, maintenance. One goal is
that process of creating a datasheet will help anticipate ethical issues with the
dataset. But datasheets also aim to make data practices more reproducible, and
help practitioners select more adequate data sources.

Going a step beyond datasheets, Jo and Gebru58 draw lessons from archival
and library sciences for the construction and documentation of machine learning
datasets. These lessons draw attention to issues of consent, inclusivity, power,
transparency, ethics and privacy.

Other approaches stay within the paradigm of minimally curated data collec-
tion but aim to modify or sanitize content deemed problematic in datasets. The

20



ImageNet creators have made efforts to remove slurs and harmful terms as well as
categories considered non-imageable, or unable to be characterized using images.
“Vegetarian” and “philanthropist” are two such categories that were removed.54

The REVISE tool aims to partially automate the process of identifying various
kinds of biases in visual datasets.59

Mitigating harms by separating the roles of datasets

Our analysis of the different roles datasets play allows greater clarity in mitigating
harms while preserving benefits. This analysis is not intended as an alternative to
the many approaches that have already been proposed for mitigating harms. Rather,
it can sharpen our thinking and strengthen other harm-mitigation strategies.

Our main observation is that the reuse of scientific benchmark datasets in
engineering pipelines complicates efforts to address biases and harms. Attempts to
address harms in such dual-use datasets leaves creators with a conundrum. On the
one hand, benchmark datasets need to be long-lived: many benchmark datasets
created decades ago continue to be useful and widely used today. Thus, modifying
a dataset down the line when new harms become known will compromise its
scientific utility, as performance on the modified dataset may not be meaningfully
comparable to performance on the older dataset.

On the other hand, attempting to anticipate all possible harms during dataset
creation is infeasible if the dataset is going to be used as training or pre-training
data. Experience shows that datasets turn out to be useful for an ever-expanding
set of downstream tasks, some of which were not even conceived of at the time of
dataset creation.

Better tradeoffs are possible if there is a clear separation between scientific
benchmarks and production-oriented datasets. In cases where the same dataset
can be potentially useful for both purposes, creators should consider making two
versions or forks of the data, because many of the harm mitigation strategies that
apply to one don’t apply to the other, and vice versa.

To enforce this separation, benchmark dataset creators should consider avoiding
the use of the dataset in production pipelines by explicitly prohibiting it in the terms
of use. Currently the licenses of many benchmark datasets prohibit commercial
uses. This restriction has a similar effect, but it is not the best way to make this
distinction. After all, production models may be noncommercial: they may be built
by researchers or governments, with the latter category having an especially high
potential for harm. At the same time, prohibiting commercial uses is arguably too
strict, as it prohibits the use of the dataset as a guide to model selection, a use that
does not raise the same risks of downstream harm.

One reason why there are fairness interventions applicable to scientific bench-
mark datasets but not production datasets is that, as we’ve argued, most of the
scientific utility of benchmarks is captured by the relative performance of models.
The fact that interventions that hurt absolute performance may be acceptable gives
greater leeway for harm mitigation efforts. Consider image classification bench-
marks. We hypothesize that the relative ranking of models will be only minimally
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affected if the dataset is modified to remove all images containing people (keeping
high-level properties including the number of classes and images the same). Such
an intervention would avoid a wide swath of the harms associated with datasets
while preserving much of its scientific utility.

Conversely, one reason why there are fairness interventions applicable to pro-
duction datasets but not scientific benchmarks is that interventions for production
datasets can be strongly guided by an understanding of their downstream impacts
in specific applications. Language and images, in particular, capture such a variety
of cultural stereotypes that sanitizing all of them has proved infeasible.60 It is
much easier to design interventions once we fix an application and the cultural
context(s) in which it will be deployed. Different interventions may be applicable
to the same dataset used in different applications. Unlike scientific benchmarks,
dataset standardization is not necessary in engineering settings.

In fact, the best locus of intervention even for dataset biases may be downstream
of the data. For example, it has been observed for many years that online translation
systems perpetuate gender stereotypes when translating gender-neutral pronouns.
The text “O bir doctor. O bir hemşire.” may be translated from Turkish to English
as “He is a doctor. She is a nurse.” Google Translate mitigated this by showing
multiple translations in such cases.61, 62 Compared to data interventions, this has
the benefit of making the potential bias (or, in some cases, erroneous translation)
more visible to the user.

Our analysis points to many areas where further research could help clarify
ethical implications. In particular, the pre-training role of benchmark datasets
occupies a grey area where it is not clear when and to what extent data biases
propagate to the target task/domain. Research on this area is nascent;63 this
research is vital because the (mis)use of scientific benchmarks for pre-training in
production pipelines is common today and unlikely to cease in the near future.

Datasets should not be seen as static, neutral technical artifacts. The harms
that could arise from a dataset depend not just on its contents but also the rules,
norms, and culture surrounding its usage. Thus, modifying these cultural practices
is one potential way to mitigate harms. As we discussed above, lack of domain
knowledge by dataset users has come to be seen almost as a virtue in machine
learning. This attitude should be reconsidered as it has a tendency to accentuate
ethical blind spots.

Datasets require stewardship, whether by the dataset creator or by another
designated entity or set of entities. Consider the problem of derivatives: popular
benchmark datasets are often extended by other researchers with additional fea-
tures, and these derived datasets can introduce the possibility of harms not present
in the original (to the same extent). For example, the Labeled Faces in the Wild
(LFW) dataset of faces was annotated by other researchers with characteristics as
race, gender, and attractiveness.64, 65 Regardless of the ethics of LFW itself, the
derived dataset enables new applications that classify people by appearance in
harmful ways.3 Of course, not all derivatives are ethically problematic. Adjudicat-

3The intended purpose of the derived dataset is to enable searching corpora of face images by
describable attributes.
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ing and enforcing such ethical distinctions is only possible if there is a governance
mechanism in place.

Beyond datasets

In this final section, we discuss important scientific and ethical questions that
are relevant to datasets but also go beyond datasets, pervading machine learning:
validity, problem framing, and limits to prediction.

Lessons from measurement

Measurement theory is an established science with ancient roots. In short, measure-
ment is about assigning numbers to objects in the real world in a way that reflects
relationships between these objects. Measurement draws an important distinction
between a construct that we wish to measure and the measurement procedure that
we used to create a numerical representation of the construct.

For example, we can think of a well-designed math exam as measuring the
mathematical abilities of a student. A student with greater mathematical ability
than another is expected to score higher on the exam. Viewed this way, an exam is
a measurement procedure that assigns numbers to students. The mathematical ability
of a student is the construct we hope to measure. We desire that the ordering of
these numbers reflects the sorting of students by their mathematical abilities. A
measurement procedure operationalizes a construct.

Every prediction problem has a target variable, the thing we’re trying to pre-
dict.4 By viewing the target variable as a construct, we can apply measurement
theory to understand what makes a good target variable.

The choice of a poor target variable cannot be ironed out with additional data.
In fact, the more data we feed into our model, the better it gets at capturing the
flawed target variable. Improved data quality or diversity are no cure either.

All formal fairness criteria that involve the target variable, separation and
sufficiency being two prominent examples5, are either meaningless or downright
misleading when the target variable itself is the locus of discrimination.

But what makes a target variable good or bad? Let’s get a better grasp on this
question by considering a few examples.

1. Predicting the value of the Standard and Poor 500 Index (S&P 500) at the
close of the New York Stock Exchange tomorrow.

2. Predicting whether an individual is going to default on a loan.
3. Predicting whether an individual is going to commit a crime.

4Recall that in a prediction problem we have covariates X from which we’re trying to predict a
variable Y. This variable Y is what we call the target variable in our prediction problem.

5Recall from Chapter 3 that separation requires the protected attribute to be independent of
the prediction conditional on the target variable. Sufficiency requires the target variable to be
independent of the protected attribute given the prediction.
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The first example is rather innocuous. It references a fairly robust target variable,
even though it relies on a number of social facts.

The second example is a common application of statistical modeling that
underlies much of modern credit scoring in the United States. At first sight a
default event seems like a clean cut target variable. But the reality is different. In
a public dataset by the Federal Reserve66 default events are coded by a so-called
performance variable that measures a serious delinquency in at least one credit line of a
certain time period. More specifically, the Federal Reserve report states that the

measure is based on the performance of new or existing accounts and
measures whether individuals have been late 90 days or more on one or
more of their accounts or had a public record item or a new collection
agency account during the performance period.6

Our third example runs into the most concerning measurement problem. How
do we determine if an individual committed a crime? What we can determine with
certainty is whether or not an individual was arrested and found guilty of a crime.
But this depends crucially on who is likely to be policed in the first place and who
is able to maneuver the criminal justice system successfully following an arrest.

Sorting out what a good target variable is, in full generality, can involve
the whole apparatus of measurement theory. The scope of measurement theory,
however, goes beyond defining reliable and valid target variables for prediction.
Measurement comes in whenever we create features for a machine learning problem
and should therefore be an essential part of the data creation process.67

Judging the quality of a measurement procedure is a difficult task. Measurement
theory has two important conceptual frameworks for arguing about what makes
measurement good. One is reliability. The other is validity.

Reliability describes the differences observed in multiple measurements of the
same object under identical conditions. Thinking of the measurement variable as a
random variable, reliability is about the variance between independent identically
distributed measurements. As such, reliability can be analogized with the statistical
notion of variance.

Validity is concerned with how well the measurement procedure in principle
captures the concept that we try to measure. If reliability is analogous to variance,
it is tempting to see validity as analogous to bias. But the situation is a bit more
complicated. There is no simple formal criterion that we could use to establish
validity. In practice, validity is based to a large extent on human expertise and
subjective judgments.

One approach to formalize validity is to ask how well a score predicts some
external criterion. This is called external validity. For example, we could judge a
measure of creditworthiness by how well it predicts default in a lending scenario.
While external validity leads to concrete technical criteria, it essentially identifies
good measurement with predictive accuracy. However, that’s certainly not all there
is to validity.

6Quote from the Federal Reserve report.
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Construct validity is a framework for discussing validity that includes numerous
different types of evidence. Messick highlights six aspects of construct validity:

• Content: How well does the content of the measurement instrument, such as
the items on a questionnaire, measure the construct of interest?

• Substantive: Is the construct supported by a sound theoretical foundation?
• Structural: Does the score express relationships in the construct domain?
• Generalizability: Does the score generalize across different populations,

settings, and tasks?
• External: Does the score successfully predict external criteria?
• Consequential: What are the potential risks of using the score with regards

to bias, fairness, and distributive justice?

Of these different criteria, external validity is the one most familiar to the
machine learning practitioner. But machine learning practice would do well to
embrace the other, more qualitative, criteria as well. The consequential criterion
has been controversial, but Messick forcefully defends its inclusion as an aspect
of validity.68 Ultimately, measurement forces us to grapple with the often surpris-
ingly uncomfortable question: What are we even trying to do when we predict
something?

Problem framing: comparisons with humans

A long-standing ambition of artificial intelligence research is to match or exceed
human cognitive abilities by an algorithm. This desire often leads to comparisons
between humans and machines on various tasks. Judgments about human accuracy
often also enter the debate around when to use statistical models in high stakes
decision making settings.

The comparison between human decision makers and statistical models is by
no means new. For decades, researchers have compared the accuracy of human
judgments with that of statistical models.69

Even within machine learning, the debate dates way back. A 1991 paper by
Bromley and Sackinger explicitly compared the performance of artificial neural
networks to a measure of human accuracy on the USPS digits dataset that predates
the famous MNIST data.12 A first experiment put the human accuracy at 2.5%, a
second experiment found the number 1.51%, while a third reported the number
2.37%.70

Comparison with so-called human baselines has since become widely accepted
in the machine learning community. The Electronic Frontier Foundation (EFF),
for example, hosts a major repository of AI progress measures that compares
the performance of machine learning models to reported human accuracies on
numerous benchmarks.

For the ILSVRC 2012 data, the reported human accuracy is 5.1%.7 This often
quoted number corresponds to the performance of a single human annotator who

7To be precise, this number is referring to the fraction of times that the correct image label was
not contained in the top 5 predicted labels of the model or human.
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was “trained on 500 images and annotated 1500 test images”.15 A second annotator
who was “trained on 100 images and then annotated 258 test images” achieved
an accuracy of 12%. Based on this number of 5.1%, researchers announced in
2015 that their model was “the first to surpass human-level performance”.71 Not
surprisingly, this claim received significant attention throughout the media.

However, a later more careful investigation into “human accuracy” on ImageNet
revealed a very different picture.72 The researchers found that only models from
2020 are actually on par with the strongest human labeler. Moreover, when
restricting the data to 590 object classes out of 1000 classes in total, the best human
labeler performed much better at less than 1% error than even the best predictive
models. Recall, that the ILSVRC 2012 data featured 118 different dog breeds alone,
some of which are extremely hard to distinguish for anyone who is not a trained
dog expert. In fact, the researchers had to consult with experts from the American
Kennel Club (AKC) to disambiguate challenging cases of different dog breeds.
Simply removing dog classes alone increases the performance of the best human
labeler to less than 1.3% error.

There is another troubling fact. Small variations in the data collection protocol
turn out to have a significant effect on the performance of machine classifiers:
“the accuracy scores of even the best image classifiers are still highly sensitive to
minutiae of the data cleaning process.”31

These results cast doubt not only on how me measure human accuracy, but also
on the validity of the presumed theoretical construct of “human accuracy” itself.
However, the machine learning community has adopted a rather casual approach
to measuring human accuracy. Many researchers assume that the construct of
human accuracy exists unambiguously and it is whatever number comes out of
some ad-hoc testing protocol for some set of human beings. These ad-hoc protocols
often result in anecdotal comparisons of questionable scientific value.

Invalid judgments about human performance relative to machines are not just
a scientific error, they also have the potential to create narratives that support
poor policy choices in high stakes policy questions around the use of predictive
models in consequential decisions. For example, criminal justice policy is being
driven by claims that statistical methods are superior to judges at predicting risk of
recidivism or failure to appear in court. However, these comparisons are dubious
because judges are not solving pure prediction problems but rather incorporate
other factors such as leniency towards younger defendants.73

Problem framing: focusing on a single optimization objective

Real-life problems rarely involve optimizing a single objective and more commonly
involve some kind of tradeoff between multiple objectives. How best to formulate
this as a statistical optimization problem is both an art and a science. However,
benchmark tasks, especially those with leaderboards, tend to pick a single objective.
For high-profile benchmarks, the resulting “overfitting to the problem formulation”
may result in scientific blind spots and limit the applicability of published findings
to practical settings.
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For example, it was well known at the time Netflix launched its Prize that
recommendation is not just a matter of maximizing predictive accuracy and, even
to the extent that it is, there isn’t one single measure that’s always appropriate.74

Yet the contest focused purely on prediction accuracy evaluated by a single metric.
A few years after the contest ended, Netflix revealed that most of the work that
went into the leaderboard had not translated to production models. Part of the
reason was that the contest did not capture the range of Netflix’s objectives and
constraints: the tight dependence of recommendations on the user interface; the
fact that “users” are typically households made of members with differing tastes;
explainability; freshness, and many more.75

If many of the insights from the leaderboard did not even generalize to Netflix’s
own production setting, the gap between Netflix and other recommendation-
oriented platforms is far greater. Notably, as a movie platform, Netflix is unusual
in that it has a relatively static inventory compared to those with user-generated
content such as YouTube or Facebook. When the content pool is dynamic, a
different class of algorithms is needed. The pull that the Netflix Prize exerted on
recommender systems research may have diverted attention away from the latter
type of algorithm for many years, although it is hard to know for sure because the
counterfactual is unobservable.

Formal machine learning competitions, even if they cause blind spots due to
the need to pick a single optimization objective, are at least carefully structured
to promote scientific progress in some narrow sense. Arguably more damaging
are the informal competitions that seems to inevitably emerge in the presence of a
prominent benchmark dataset, resulting in unfortunate outcomes such as insightful
papers being rejected because they failed to beat the state of the art, or unoriginal
papers being published because they did beat the state of the art by (scientifically
insignificant) application of greater computing power.

Another downside to a field oriented around one-dimensional, competitive
pursuit is that it becomes structurally difficult to address biases in models and
classifiers. If a contestant takes steps to prevent dataset bias from propagating
to their models, there will be an accuracy drop (because accuracy is judged on a
biased dataset) and fewer people will pay attention to the work.

As fairness issues in machine learning have gained prominence, fairness-
focused benchmarks datasets have proliferated, such as the Pilot Parliamentarians
Benchmark for facial analysis52 and the Equity Evaluation Corpus for sentiment
analysis.76 An advantage of this approach is that the scientific and cultural ma-
chinery of benchmark-oriented innovation can be repurposed for fairness research.
A potential danger is Goodhart’s law, which states, in its broad form, “When a
measure becomes a target, it ceases to be a good measure.” As we’ve emphasized
in this book, fairness is multifaceted, and benchmarks can capture only narrow
notions of fairness. While these can be useful diagnostics, if they are misconstrued
as targets in their own right, then research that is focused on optimizing for these
benchmarks may not result in fairness in a more substantive sense. In addition,
the construction of these datasets has often been haphazard, without adequate
attention to issues of validity.77
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In addition to creating fairness-focused benchmarks, the algorithmic fairness
community has also repurposed earlier benchmarks toward the study of fairness
questions. Consider the Census dataset from the UCI repository discussed earlier.
It originally gained popularity as a source of real-world data. Its use is acceptable
for studying algorithmic questions such as, say, the relative strengths of decision
trees and logistic regression. We expect the answers to be insensitive to issues like
the cultural context of the data. But now it is being used for studying fairness
questions such as how classification accuracy tends to vary by race or gender.
For such questions, the answers are sensitive to the details of the subpopulations.
Further, the classification task associated with the benchmark (prediction of income
treated as a binary variable) is artificial and does not correspond to any real-life
application. Thus, accuracy disparities (and other fairness-related measurements)
may look different for a different task, or if the data had been sampled differently,
or if it came from a different time or place. Using benchmark datasets to make
generalizable claims about fairness requires careful attention to issues of context,
sampling, and validity. Bao et al. question whether benchmark datasets for socio-
technical systems like criminal justice are useful. They point out that benchmark
culture — where the focus is on methods, with the dataset being secondary and the
context ignored — is at odds with the actual needs of fairness and justice, where
attention to context is paramount.78

Limits of data and prediction

Machine learning fails in many scenarios and it’s important to understand the
failure cases as much as the success stories.

The Fragile Families Challenge was a machine learning competition based on
the Fragile Families and Child Wellbeing study (FFCWS).79 Starting from a random
sample of hospital births between 1998 and 2000, the FFCWS followed thousand
of American families over the course of 15 years, collecting detailed information,
about the families’ children, their parents, educational outcomes, and the larger
social environment. Once a family agreed to participate in the study, data were
collected when the child was born, and then at ages 1, 3, 5, 9, and 15.

The Fragile Families Challenge concluded in 2017. The underlying dataset for
the competition contains 4242 rows, one for each family, and 12943 columns, one
for each variable plus an ID number of each family. Of the 12942 variables, 2358 are
constant (i.e., had the same value for all rows), mostly due to redactions for privacy
and ethics concerns. Of the approximately 55 million (4242 x 12942) entries in the
dataset, about 73% do not have a value. Missing values have many possible reasons,
including non-response of surveyed families, drop out of study participants, as
well as logical relationships between features that imply certain fields are missing
depending on how others are set. There are six outcome variables, measured at age
15: 1) child grade point average (GPA), 2) child grit, 3) household eviction, 4) household
material hardship, 5) caregiver layoff, and 6) caregiver participation in job training.

The goal of the competition was to predict the value of the outcome variables
at age 15 given the data from age 1 through 9. As is common for competitions, the
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challenge featured a three-way data split: training, leaderboard, and test sets. The
training set is publicly available to all participants, the leaderboard data support a
leaderboard throughout the competition, and the test set is used to determine a
final winner.

The outcome of the prediction challenge was disappointing. Even the winning
models performed hardly better than a simple baseline their predictions didn’t
differ much compared to predicting the mean of each outcome.

What caused the poor performance of machine learning on the fragile families
data? One obvious possibility is that none of the contestants hit upon the right
machine learning techniques for this task. But the fact that 160 teams of motivated
experts submitted thousands of models over the course of five months makes this
highly unlikely. Besides, models from disparate model classes all made very similar
(and equally erroneous) predictions, suggesting that learning algorithms weren’t
the limitation.808 There are a few other technical possibilities that could explain
the disappointing performance, including the sample size, the study design, and
the missing values.

But there is also a more fundamental reason that remains plausible. Perhaps
the dynamics of life trajectories are inherently unpredictable over the six year time
delay between measurement of the covariates and measurement of the outcome.
This six year gap, for example, included the Great Recession, a period of economic
shocks and decline between 2007 and 2009, that might have changed trajectories in
unforeseeable ways.

In fact, there’s an important reason why even the performance of models in
the challenge, dismal as they were, may overestimate what we can expect in a
real-world setting. That’s because the models were allowed to peek into the future,
so to speak. The training and test sets were drawn from the same distribution and,
in particular, the same time period, as is the standard practice in machine learning
research. Thus, the data already incorporates information about the effect of the
Great Recession and other global shocks during this period. In a real application,
models must be trained on data from the past whereas predictions are about the
future. Thus, there is always some drift — a change in the relationship between
the covariates and the outcome. This puts a further limit on model performance.

Machine learning works best in a static and stable world where the past looks
like the future. Prediction alone can be a poor choice when we’re anticipating
dynamic changes, or when we are trying to reason about the effect that hypothetical
actions would have in the real world.

Summary

Benchmark datasets are central to machine learning. They play many roles includ-
ing enabling algorithmic innovation, measuring progress, and providing training

8This highlights an advantage of the benchmark dataset approach over one with less standardiza-
tion: even when there is a failure to make substantial progress on prediction, we can learn something
valuable from that failure.
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data. Since its systematization in the late 1980s, performance evaluation on bench-
marks has gradually become a ubiquitous practice because it makes it harder for
researchers to cheat intentionally or unintentionally.

But an excessive focus on benchmarks brings many drawbacks. Researchers
spend prodigious amounts of effort optimizing models to achieve state of the art
performance. The results are often both scientifically uninteresting and of little
relevance to practitioners because benchmarks omit many real-world details. The
approach also amplifies the harms associated with data including downstream
harms, representational harms, and privacy violations.

As we write this book, the benchmark approach is coming under scrutiny
because of these ethical concerns. While the benefits and drawbacks of benchmarks
are both well known, our overarching goal in this chapter has been to provide
a single framework that can help analyze both. Our position is that the core of
the benchmark approach is worth preserving, but we envision a future where
benchmarks play a more modest role as one of many ways to advance knowledge.
To mitigate the harms associated with data, we believe that substantial changes
to the practices of dataset creation, use, and governance are necessary. We have
outlined a few ways to do this, adding to the emerging literature on this topic.

Chapter notes

This chapter was developed and first published by Hardt and Recht in the textbook
Patterns, Predictions, and Actions: Foundations of Machine Learning.81 With permission
from the authors, we include a large part of the original text here with only slight
modifications. We removed a significant amount of material on adaptive data
analysis and the problem of overfitting in machine learning benchmarks. We added
new material on the roles that datasets play, as well as discussion about fairness
and ethical concerns relating to datasets.

Adaptivity in holdout reuse was studied by Dwork et al.82 and there has been
subsequent work in the area of adaptive data analysis. Similar concerns go under
the name of inference after selection in the statistics community.

The collection and use of large ad-hoc data sets (once referred to as “big
data”) has been scrutinized in several important works, see, for example, boyd and
Crawford,83 as well as Tufekci.84, 85 More recently, Couldry and Mejias86 use the
term data colonialism to emphasize the processes by which data are appropriated
and marginalized communities are exploited through data collection. Olteanu et
al.87 discuss biases, methodological pitfalls, and ethical questions in the context of
social data analysis. In particular, the article provides taxonomies of biases and
issues that can arise in the sourcing, collection, processing, and analysis of social
data. Bowker and Star’s classic text explains why categorization is a morally laden
activity.88 For a discussion of the harms of category systems embedded in machine
learning datasets, see Atlas of AI.89

The benefits of the benchmark dataset approach are discussed in a talk by
Mark Liberman, who calls it the common task method.90 Paullada, Raji, Ben-
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der, Denton, and Hanna survey dataset development and use cases in machine
learning research.91 A survey by Fabris, Messina, Silvello, and Susto lists and
discusses numerous datasets uses throughout the fairness literature.92 Denton,
Hanna, Amironesei, Smart and Nicole provide a genealogy of ImageNet through
a critical lens.93 Raji, Bender, Paullada, Denton and Hanna give an overview
of concerns arising from basing our understanding of progress on a small col-
lection of influential benchmarks.94 The EFF AI metrics project is available at:
https://www.eff.org/ai/metrics.

For an introduction to measurement theory, not specific to the social sciences,
see the books by Hand.95, 96 The textbook by Bandalos97 focuses on applications to
the social science, including a chapter on fairness. Liao, Taori, Raji and Schmidt
provide a taxonomy of evaluation failures across many subfields of machine
learning, encompassing both internal and external validity issues.98
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