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Preface

A peculiar way of making decisions is characteristic of modern society. Institutions
of all kinds, from firms to governments, represent populations as data tables. Rows
reference individuals. Columns contain measurements about them. Statistical
machinery applied to these tables empowers their owners to mine patterns that fit
the aggregate.

Then comes a leap of faith. We have to imagine that unknown outcomes, future
or unobserved, in the life trajectory of an individual follow the patterns they have
found. We must accept decisions made as if all individuals were going to follow
the rule of the aggregate. We must pretend to ourselves that to look into the future
is to look into the past. It’s a leap of faith that has been the basis of consequential
decisions for centuries. Fueled by early successes in insurance pricing and financial
risk assessment, statistical decision making of this kind has found its way into
nearly all aspects of our lives. What accelerated its adoption in recent years has
been the explosive growth of machine learning, often under the name of artificial
intelligence.

Machine learning shares long established decision-theoretic foundations with
large parts of statistics, economics, and computer science. What machine learning
adds is a rapidly growing repertoire of heuristics that find decision rules from
sufficiently large datasets. These techniques for fitting huge statistical models on
large datasets have led to several impressive technological achievements. Image
classification, speech recognition, and natural language processing have all made
leaps forward. Although these advances often don’t directly relate to specific
decision making settings, they shape narratives about the new capabilities of
machine learning.

As useful as machine learning is for some positive applications, it is also
used to great effect for tracking, surveillance, and warfare. Commercially its
most successful use cases to date are targeted advertising and digital content
recommendation, both of questionable value to society. From its roots in World
War II era cybernetics and control theory, machine learning has always been
political. Advances in artificial intelligence feed into a global industrial military
complex, and are funded by it. The success stories told about machine learning
also support those who would like to adopt algorithms in domains outside those
studied by computer scientists. An opaque marketplace of software vendors
renders algorithmic decision making tools for use in law enforcement, criminal
justice, education, and social services. In many cases what is marketed and sold
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as artificial intelligence are statistical methods that virtually haven’t changed in
decades.

Many take the leap of faith behind statistical decision making for granted to
an extent that it’s become difficult to question. Entire disciplines have embraced
mathematical models of optimal decision making in their theoretical foundations.
Much of economic theory takes optimal decisions as an assumption and an ideal
of human behavior. In turn, other disciplines label deviations from mathematical
optimality as “bias” that invites elimination. Volumes of academic papers speak to
the evident biases of human decision makers.

In this book, we take machine learning as a reason to revisit this leap of faith
and to interrogate how institutions make decisions about individuals. Institutional
decision making has long been formalized via bureaucratic procedures and machine
learning shares much in common with it. In many cases, machine learning is
adopted to improve and sometimes automate the high-stakes decisions routinely
made by institutions. Thus, we do not compare machine learning models to the
subjective judgments of individual humans, but instead to institutional decision-
making. Interrogating machine learning is a way of interrogating institutional
decision making in society today and for the foreseeable future.

If machine learning is our way into studying institutional decision making,
fairness is the moral lens through which we examine those decisions. Much of
our discussion applies to concrete screening, selection, and allocation scenarios.
A typical example is that of an employer accepting or rejecting job applicants.
One way to construe fairness in such decision making scenarios is as the absence
of discrimination. This perspective is micro insofar as individuals are the unit
of analysis. We study how measured characteristics of an individual lead to
different outcomes. Individuals are the sociological building block. A population
is a collection of individuals. Groups are subsets of the population. A decision
maker has the power to accept or reject individuals for an opportunity they seek.
Discrimination in this view is about wrongful consideration on the basis of group
membership. The problem is as much about what wrongful means as what is on
the basis of. Discrimination is also not a general concept. It’s domain specific as
it relates to opportunities that affect people’s lives. It’s concerned with socially
salient categories that have served as the basis for unjustified and systematically
adverse treatment.

The first chapter after the introduction explores the properties that make
automated decision making a matter of significant and unique normative concern.
In particular, we situate our exploration of machine learning in a longer history of
critical reflection on the perils of bureaucratic decision making and its mechanical
application of formalized rules. Before we even turn to questions of discrimination,
we first ask what makes automated decision-making legitimate in the first place.
In so doing, we isolate the specific properties of machine learning that distinguish
it from other forms of automation along a range of normative dimensions.

Since the 1950s, scholars have developed formal models of discrimination that
describe the unequal treatment of multiple different groups in the population by
a decision maker. In Chapter 3, we dive into statistical decision theory, allowing
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us to formalize a number of fairness criteria. Statistical fairness criteria express
different notions of equality between groups. We boil down the vast space of
formal definitions to essentially three different mutually exclusive definitions. Each
definition resonates with a different moral intuition. None is sufficient to support
conclusive claims of fairness. Nor are these definitions suitable targets to optimize
for. Satisfying one of these criteria permits blatantly unfair solutions. Despite their
significant limitations, these definitions have been influential in the debate around
fairness.

Chapter 4 explores the normative underpinnings of objections to systematic
differences in the treatment of different groups and inequalities in the outcomes
experienced by these groups. We review the many accounts of the wrongfulness
of discrimination and show how these relate to various views of what it would
mean to provide equality of opportunity. In doing so, we highlight some tensions
between competing visions of equality of opportunity—some quite narrow and
others quite sweeping—and the various arguments that have been advanced to
help settle these conflicts. With this in place, we then explore how common moral
intuitions and established moral theories can help us make sense of the formalisms
introduced in Chapter 3, with the goal of giving these definitions greater normative
substance.

Present in both technical and legal scholarship on discrimination is the idea of
assigning normative weight to causal relationships. Was group membership the
cause of rejection? Would the applicant have been rejected had he been of a different
race? Would she have been accepted but for her gender? To understand these
kinds of statements and the role that causality plays in discrimination, Chapter 5

of this book is a self-contained introduction to the formal concepts of causality.
Following our formal encounter with fairness definitions, both statistical and

causal, we turn to the legal dimensions of discrimination in the United States in
Chapter 6. The legal situation neither maps cleanly to the moral foundations nor
the formal work, complicating the situation considerably. The two dominant legal
doctrines, disparate treatment and disparate impact, appear to create a tension
between explicit consideration of group membership and intervening to avoid
discrimination.

Extending on both the causal and legal chapters, Chapter 7 goes into detail
about the complexities of testing for discrimination in practice through experiments
and audits.

Studying discrimination in decision making has been criticized as a narrow per-
spective on a broader system of injustice for at least two reasons. First, as a notion
of discrimination it neglects powerful structural determinants of discrimination,
such as laws and policies, infrastructure, and education. Second, it orients the space
of intervention towards solutions that reform existing decision making systems,
in the case of machine learning typically via updates to an algorithm. As such
the perspective can seem to prioritize “tech fixes” over more powerful structural
interventions and alternatives to deploying a machine learning system altogether.
Rather than predicting failure to appear in court and punishing defendants for
it, for example, perhaps the better intervention is to facilitate access to court ap-
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pointments by providing transportation and child care. Chapter 8 introduces the
reader to this broader perspective and its associated space of interventions from an
empirical angle.

Recognizing the importance of a broader social and structural perspective, why
should we continue to study the notion of discrimination in decision making?
One benefit is that it provides a political and legal strategy to put pressure on
individual decision makers. We can bring forward claims of discrimination against
a specific person, firm, or institution. We can discuss what interventions exist
within reasonable proximity to the decision maker that we therefore expect the
decision maker to implement. Some such micro interventions may also be more
directly feasible than structural interventions.

Taking on a micro perspective decidedly does not mean to ignore context. In
fact, allocation rules that avoid explicit consideration of group membership while
creating opportunity for a group likely do so by connecting the allocation rule
with external social facts. One prominent example is the “Texas ten percent rule”
that guarantees Texas students who graduated in the top ten percent of their high
school class automatic admission to all state-funded universities. The rule wouldn’t
be effective in promoting racial diversity on public university campuses if high
school classes weren’t segregated to begin with. This example illustrates that there
is no mutual exclusivity between examining specific decision rules in detail and
paying attention to broader social context. Rather these go hand in hand.

A consequential point of contact between the broader social world and the
machine learning ecosystem are datasets. A full chapter explores the history, sig-
nificance, and scientific basis of machine learning datasets. Detailed consideration
of datasets, the collection and construction of data, as well as the harms associated
with data tend to be lacking from machine learning curricula.

Fairness remains an active research area that is far from settled. We wrote this
book during a time of explosive research activity. Thousands of related papers
have appeared in the last five years of writing. Many of them propose fairness-
promoting algorithmic interventions. This text is not a survey of this rapidly
evolving area, nor is it a definitive reference. The final chapter, available online,
provides an entry point to the emerging research on algorithmic interventions.

The book has some serious, perhaps obvious, limitations.
Large parts of our book are specific to the United States. Written by three

authors educated and employed at US institutions, the book is based on Western
moral tradition, assumes the laws and legal theory of the United States, and
references the industrial and political context of the United States throughout. We
made no attempt to address this serious limitation within this book. Indeed, it
would require an entirely different book to address this limitation.

A second limitation stems from the fact that our primary goal was to develop
the moral, normative, and technical foundations necessary to engage with the topic.
Due to its focus on foundations, the book will strike some as a step removed from
the important experiences of those individuals and communities most seriously
wronged and harmed by the use of algorithms. This shortcoming is exacerbated by
the fact that the authors of this book lack first-hand experience of the systems of
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oppression that algorithms are a part of. Consequently, this book is no substitute
for the vital work of those activists, journalists, and scholars that have taught
us about the dangers of algorithmic decision making in context. We build on
these essential contributions in writing this book. We aimed to highlight them
throughout, anticipating that we likely fell short in some significant ways.

The book is neither a wholesale endorsement of algorithmic decision making,
nor a broad indictment. In writing this book, we attempt what is likely the least
popular position on any topic: a balance. We try to work out where algorithmic
decision making has merit, while committing significant attention to its harms and
limitations. Some will see our balancing act as a lack of political commitments, a
sort of bothsideism.

Despite the urgency of the political situation, our book provides no direct
practical guide to fair decisions. As a matter of fact, we wrote this book for the
long haul. We’re convinced that the debates around algorithmic decision making
will persist. Our goal is to strengthen the intellectual foundations of debates to
come, which will play out in thousands of specific instances. Anyone hoping to
shape this future of algorithmic decision making in society will likely find some
worthwhile material in this book.

A few chapters, specifically Chapter 3 on classification and Chapter 5 on
causality, require significant mathematical prerequisites, primarily in undergrad-
uate probability and statistics. However, the other chapters we dedicate to much
broader audiences. We hope that students in multiple fields will find this book
helpful in preparing for research in related areas. The book does not fit neatly into
the disciplinary boundaries of any single department. As a result it gives readers
an opportunity to go beyond established curricula in their primary discipline.

Since we’ve started publishing material from this book years ago, instructors
have incorporated the material into a variety of courses, both at the undergraduate
and graduate level, in different departments. Hundreds of readers have sent us
tremendously helpful feedback for which we are deeply grateful.

And to those lamenting our slow progress in writing this book, we respond
empathetically:

That’s fair.
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1
Introduction

Our success, happiness, and wellbeing are never fully of our own making. Others’
decisions can profoundly affect the course of our lives: whether to admit us to a
particular school, offer us a job, or grant us a mortgage. Arbitrary, inconsistent,
or faulty decision-making thus raises serious concerns because it risks limiting
our ability to achieve the goals that we have set for ourselves and access the
opportunities for which we are qualified.

So how do we ensure that these decisions are made the right way and for the
right reasons? While there’s much to value in fixed rules, applied consistently, good
decisions take available evidence into account. We expect admissions, employment,
and lending decisions to rest on factors that are relevant to the outcome of interest.

Identifying details that are relevant to a decision might happen informally and
without much thought: employers might observe that people who study math
seem to perform particularly well in the financial industry. But they could test
these observations against historical evidence by examining the degree to which
one’s major correlates with success on the job. This is the traditional work of
statistics—and it promises to provide a more reliable basis for decision-making by
quantifying how much weight to assign certain details in our determinations.

A body of research has compared the accuracy of statistical models to the
judgments of humans, even experts with years of experience. In many head-to-
head comparisons on fixed tasks, data-driven decisions are more accurate than
those based on intuition or expertise. As one example, in a 2002 study, automated
underwriting of loans was both more accurate and less racially disparate.1 These
results have been welcomed as a way to ensure that the high-stakes decisions that
shape our life chances are both accurate and fair.

Machine learning promises to bring greater discipline to decision-making
because it offers to uncover factors that are relevant to decision-making that
humans might overlook, given the complexity or subtlety of the relationships in
historical evidence. Rather than starting with some intuition about the relationship
between certain factors and an outcome of interest, machine learning lets us defer
the question of relevance to the data themselves: which factors—among all that we
have observed—bear a statistical relationship to the outcome.

Uncovering patterns in historical evidence can be even more powerful than
this might seem to suggest. Breakthroughs in computer vision—specifically object
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recognition—reveal just how much pattern-discovery can achieve. In this domain,
machine learning has helped to overcome a strange fact of human cognition: while
we may be able to effortlessly identify objects in a scene, we are unable to specify
the full set of rules that we rely upon to make these determinations. We cannot
hand code a program that exhaustively enumerates all the relevant factors that
allow us to recognize objects from every possible perspective or in all their potential
visual configurations. Machine learning aims to solve this problem by abandoning
the attempt to teach a computer through explicit instruction in favor of a process
of learning by example. By exposing the computer to many examples of images
containing pre-identified objects, we hope the computer will learn the patterns that
reliably distinguish different objects from one another and from the environments
in which they appear.

This can feel like a remarkable achievement, not only because computers can
now execute complex tasks but also because the rules for deciding what appears in
an image seem to emerge from the data themselves.

But there are serious risks in learning from examples. Learning is not a process
of simply committing examples to memory. Instead, it involves generalizing from
examples: honing in on those details that are characteristic of (say) cats in general,
not just the specific cats that happen to appear in the examples. This is the process
of induction: drawing general rules from specific examples—rules that effectively
account for past cases, but also apply to future, as yet unseen cases, too. The hope
is that we’ll figure out how future cases are likely to be similar to past cases, even
if they are not exactly the same.

This means that reliably generalizing from historical examples to future cases
requires that we provide the computer with good examples: a sufficiently large
number of examples to uncover subtle patterns; a sufficiently diverse set of ex-
amples to showcase the many different types of appearances that objects might
take; a sufficiently well-annotated set of examples to furnish machine learning
with reliable ground truth; and so on. Thus, evidence-based decision-making is
only as reliable as the evidence on which it is based, and high quality examples
are critically important to machine learning. The fact that machine learning is
“evidence-based” by no means ensures that it will lead to accurate, reliable, or fair
decisions.

This is especially true when using machine learning to model human behavior
and characteristics. Our historical examples of the relevant outcomes will almost
always reflect historical prejudices against certain social groups, prevailing cultural
stereotypes, and existing demographic inequalities. And finding patterns in these
data will often mean replicating these very same dynamics.

Something else is lost in moving to automated, predictive decision making.
Human decision makers rarely try to maximize predictive accuracy at all costs;
frequently, they might consider factors such as whether the attributes used for
prediction are morally relevant. For example, although younger defendants are
statistically more likely to re-offend, judges are loath to take this into account in
deciding sentence lengths, viewing younger defendants as less morally culpable.
This is one reason to be cautious of comparisons seemingly showing the superiority
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of statistical decision making.2 Humans are also unlikely to make decisions that
are obviously absurd, but this could happen with automated decision making,
perhaps due to erroneous data. These and many other differences between human
and automated decision making are reasons why decision making systems that
rely on machine learning might be unjust.

We write this book as machine learning begins to play a role in especially
consequential decision-making. In the criminal justice system, as alluded to above,
defendants are assigned statistical scores that are intended to predict the risk of
committing future crimes, and these scores inform decisions about bail, sentencing,
and parole. In the commercial sphere, firms use machine learning to analyze and
filter resumes of job applicants. And statistical methods are of course the bread
and butter of lending, credit, and insurance underwriting.

We now begin to survey the risks in these and many other applications of
machine learning, and provide a critical review of an emerging set of proposed
solutions. We will see how even well-intentioned applications of machine learning
might give rise to objectionable results.

Demographic disparities

Amazon uses a data-driven system to determine the neighborhoods in which to
offer free same-day delivery. A 2016 investigation found stark disparities in the
demographic makeup of these neighborhoods: in many U.S. cities, White residents
were more than twice as likely as Black residents to live in one of the qualifying
neighborhoods.3

Now, we don’t know the details of how Amazon’s system works, and in
particular we don’t know to what extent it uses machine learning. The same is true
of many other systems reported on in the press. Nonetheless, we’ll use these as
motivating examples when a machine learning system for the task at hand would
plausibly show the same behavior.

In Chapter 3 we’ll see how to make our intuition about demographic dispar-
ities mathematically precise, and we’ll see that there are many possible ways of
measuring these inequalities. The pervasiveness of such disparities in machine
learning applications is a key concern of this book.

When we observe disparities, it doesn’t imply that the designer of the system
intended for such inequalities to arise. Looking beyond intent, it’s important to
understand when observed disparities can be considered to be discrimination. In
turn, two key questions to ask are whether the disparities are justified and whether
they are harmful. These questions rarely have simple answers, but the extensive
literature on discrimination in philosophy and sociology can help us reason about
them.

To understand why the racial disparities in Amazon’s system might be harmful,
we must keep in mind the history of racial prejudice in the United States, its
relationship to geographic segregation and disparities, and the perpetuation of
those inequalities over time. Amazon argued that its system was justified because

3



it was designed based on efficiency and cost considerations and that race wasn’t
an explicit factor. Nonetheless, it has the effect of providing different opportunities
to consumers at racially disparate rates. The concern is that this might contribute
to the perpetuation of long-lasting cycles of inequality. If, instead, the system had
been found to be partial to ZIP codes ending in an odd digit, it would not have
triggered a similar outcry.

The term bias is often used to refer to demographic disparities in algorithmic
systems that are objectionable for societal reasons. We’ll minimize the use of this
sense of the word bias in this book, since different disciplines and communities
understand the term differently, and this can lead to confusion. There’s a more
traditional use of the term bias in statistics and machine learning. Suppose that
Amazon’s estimates of delivery dates/times were consistently too early by a few
hours. This would be a case of statistical bias. A statistical estimator is said to be
biased if its expected or average value differs from the true value that it aims to
estimate. Statistical bias is a fundamental concept in statistics, and there is a rich
set of established techniques for analyzing and avoiding it.

There are many other measures that quantify desirable statistical properties of
a predictor or an estimator, such as precision, recall, and calibration. These are
similarly well understood; none of them require any knowledge of social groups
and are relatively straightforward to measure. The attention to demographic
criteria in statistics and machine learning is a relatively new direction. This reflects
a change in how we conceptualize machine learning systems and the responsibilities
of those building them. Is our goal to faithfully reflect the data? Or do we have
an obligation to question the data, and to design our systems to conform to some
notion of equitable behavior, regardless of whether or not that’s supported by the
data currently available to us? These perspectives are often in tension, and the
difference between them will become clearer when we delve into stages of machine
learning.

The machine learning loop

Let’s study the pipeline of machine learning and understand how demographic
disparities propagate through it. This approach lets us glimpse into the black box
of machine learning and will prepare us for the more detailed analyses in later
chapters. Studying the stages of machine learning is crucial if we want to intervene
to minimize disparities.

The figure below shows the stages of a typical system that produces outputs
using machine learning. Like any such diagram, it is a simplification, but it is
useful for our purposes.

The first stage is measurement, which is the process by which the state of the
world is reduced to a set of rows, columns, and values in a dataset. It’s a messy
process, because the real world is messy. The term measurement is misleading,
evoking an image of a dispassionate scientist recording what she observes, whereas
we’ll see that it requires subjective human decisions.
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Figure 1.1: The machine learning loop

The ‘learning’ in machine learning refers to the next stage, which is to turn
that data into a model. A model summarizes the patterns in the training data; it
makes generalizations. A model could be trained using supervised learning via an
algorithm such as Support Vector Machines, or using unsupervised learning via
an algorithm such as k-means clustering. It could take many forms: a hyperplane
or a set of regions in n-dimensional space, or a set of distributions. It is typically
represented as a set of weights or parameters.

The next stage is the action we take based on the model’s predictions, which are
applications of the model to new, unseen inputs. By the way, ‘prediction’ is another
misleading term—while it does sometimes involve trying to predict the future (“is
this patient at high risk for cancer?”), sometimes it doesn’t (“is this social media
account a bot?”).

Prediction can take the form of classification (determine whether a piece of
email is spam), regression (assigning risk scores to defendants), or information
retrieval (finding documents that best match a search query).
The actions in these three applications might be: depositing the email in the
user’s inbox or spam folder, deciding whether to set bail for the defendant’s pre-
trial release, and displaying the retrieved search results to the user. They may
differ greatly in their significance to the individual, but they have in common
that the collective responses of individuals to these decisions alter the state of the
world—that is, the underlying patterns that the system aims to model.

Some machine learning systems record feedback from users (how users react to
actions) and use them to refine the model. For example, search engines track what
users click on as an implicit signal of relevance or quality. Feedback can also occur
unintentionally, or even adversarially; these are more problematic, as we’ll explore
later in this chapter.

The state of society

In this book, we’re concerned with applications of machine learning that involve
data about people. In these applications, the available training data will likely
encode the demographic disparities that exist in our society. For example, the
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Figure 1.2: A sample of occupations in the United States in decreasing order of the
percentage of women. The area of the bubble represents the number of workers.

figure shows the gender breakdown of a sample of occupations in the United States,
based on data released by the Bureau of Labor Statistics for the year 2017.

Unsurprisingly, many occupations have stark gender imbalances. If we’re
building a machine learning system that screens job candidates, we should be
keenly aware that this is the baseline we’re starting from. It doesn’t necessarily
mean that the outputs of our system will be inaccurate or discriminatory, but
throughout this chapter we’ll see how it complicates things.

Why do these disparities exist? There are many potentially contributing factors,
including a history of explicit discrimination, implicit attitudes and stereotypes
about gender, and differences in the distribution of certain characteristics by gender.
We’ll see that even in the absence of explicit discrimination, stereotypes can be self-
fulfilling and persist for a long time in society. As we integrate machine learning
into decision-making, we should be careful to ensure that ML doesn’t become a
part of this feedback loop.

What about applications that aren’t about people? Consider “Street Bump,” a
project by the city of Boston to crowdsource data on potholes. The smartphone app
automatically detects potholes using data from the smartphone’s sensors and sends
the data to the city. Infrastructure seems like a comfortably boring application of
data-driven decision-making, far removed from the ethical quandaries we’ve been
discussing. And yet! Kate Crawford points out that the data reflect the patterns of
smartphone ownership, which are higher in wealthier parts of the city compared
to lower-income areas and areas with large elderly populations.4 The lesson here is
that it’s rare for machine learning applications to not be about people. In the case
of Street Bump, the data is collected by people, and hence reflects demographic
disparities; besides, the reason we’re interested in improving infrastructure in the
first place is its effect on people’s lives.

To drive home the point that most machine learning applications involve
people, we analyzed Kaggle, a well-known platform for data science competitions.
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We focused on the top 30 competitions sorted by prize amount. In 14 of these
competitions, we observed that the task is to make decisions about individuals.
In most of these cases, there exist societal stereotypes or disparities that may be
perpetuated by the application of machine learning. For example, the Automated
Essay Scoring5 task seeks algorithms that attempt to match the scores of human
graders of student essays. Students’ linguistic choices are signifiers of social group
membership, and human graders are known to sometimes have prejudices based
on such factors.6, 7 Thus, because human graders must provide the original labels,
automated grading systems risk enshrining any such discriminatory patterns that
are captured in the training data.

In a further 5 of the 30 competitions, the task did not call for making decisions
about people, but decisions made using the model would nevertheless directly
impact people. For example, one competition sponsored by real-estate company
Zillow calls for improving the company’s “Zestimate” algorithm for predicting
home sale prices. Any system that predicts a home’s future sale price (and
publicizes these predictions) is likely to create a self-fulfilling feedback loop in
which homes predicted to have lower sale prices deter future buyers, suppressing
demand and lowering the final sale price.

In 9 of the 30 competitions, we did not find an obvious, direct impact on people,
such as a competition on predicting ocean health (of course, even such competitions
have indirect impacts on people, due to actions that we might take on the basis of
the knowledge gained). In two cases, we didn’t have enough information to make
a determination.

To summarize, human society is full of demographic disparities, and training
data will likely reflect these. We’ll now turn to the process by which training data
is constructed, and see that things are even trickier.

The trouble with measurement

The term measurement suggests a straightforward process, calling to mind a camera
objectively recording a scene. In fact, measurement is fraught with subjective
decisions and technical difficulties.

Consider a seemingly straightforward task: measuring the demographic di-
versity of college campuses. A 2017 New York Times article aimed to do just
this, and was titled “Even With Affirmative Action, Blacks and Hispanics Are
More Underrepresented at Top Colleges Than 35 Years Ago”.8 The authors argue
that the gap between enrolled Black and Hispanic freshmen and the Black and
Hispanic college-age population has grown over the past 35 years. To support
their claim, they present demographic information for more than 100 American
universities and colleges from the year 1980 to 2015, and show how the percentages
of Black, Hispanic, Asian, White, and multiracial students have changed over the
years. Interestingly, the multiracial category was only recently introduced in 2008,
but the comparisons in the article ignore the introduction of this new category.
How many students who might have checked the “White” or “Black” box checked

7



the “multiracial” box instead? How might this have affected the percentages of
“White” and “Black” students at these universities? Furthermore, individuals’
and society’s conception of race changes over time. Would a person with Black
and Latino parents be more inclined to self-identify as Black in 2015 than in the
1980s? The point is that even a seemingly straightforward question about trends in
demographic diversity is impossible to answer without making some assumptions,
and illustrates the difficulties of measurement in a world that resists falling neatly
into a set of checkboxes. Race is not a stable category; how we measure race often
changes how we conceive of it, and changing conceptions of race may force us to
alter what we measure.

To be clear, this situation is typical: measuring almost any attribute about
people is similarly subjective and challenging. If anything, things are more chaotic
when machine learning researchers have to create categories, as is often the case.

One area where machine learning practitioners often have to define new cate-
gories is in defining the target variable.9 This is the outcome that we’re trying to
predict – will the defendant recidivate if released on bail? Will the candidate be a
good employee if hired? And so on.

Biases in the definition of the target variable are especially critical, because they
are guaranteed to bias the predictions relative to the actual construct we intended
to predict, as is the case when we use arrests as a measure of crime, or sales as a
measure of job performance, or GPA as a measure of academic success. This is not
necessarily so with other attributes. But the target variable is arguably the hardest
from a measurement standpoint, because it is often a construct that is made up for
the purposes of the problem at hand rather than one that is widely understood
and measured. For example, “creditworthiness” is a construct that was created in
the context of the problem of how to successfully extend credit to consumers;9 it is
not an intrinsic property that people either possess or lack.

If our target variable is the idea of a “good employee”, we might use perfor-
mance review scores to quantify it. This means that our data inherits any biases
present in managers’ evaluations of their reports. Another example: the use of
computer vision to automatically rank people’s physical attractiveness.10, 11 The
training data consists of human evaluation of attractiveness, and, unsurprisingly,
all these classifiers showed a preference for lighter skin.

In some cases we might be able to get closer to a more objective definition for a
target variable, at least in principle. For example, in criminal risk assessment, the
training data is not judges’ decisions about bail, but rather based on who actually
went on to commit a crime. But there’s at least one big caveat—we can’t really
measure who committed a crime, so we use arrests as a proxy. This means that
the training data contain distortions not due to the prejudices of judges but due
to discriminatory policing. On the other hand, if our target variable is whether
the defendant appears or fails to appear in court for trial, we would be able to
measure it directly with perfect accuracy. That said, we may still have concerns
about a system that treats defendants differently based on predicted probability
of appearance, given that some reasons for failing to appear are less objectionable
than others (trying to hold down a job that would not allow for time off versus
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trying to avoid prosecution).12

In hiring, instead of relying on performance reviews for (say) a sales job, we
might rely on the number of sales closed. But is that an objective measurement or
is it subject to the prejudices of the potential customers (who might respond more
positively to certain salespeople than others) and workplace conditions (which
might be a hostile environment for some, but not others)?

In some applications, researchers repurpose an existing scheme of classification
to define the target variable rather than creating one from scratch. For example,
an object recognition system can be created by training a classifier on ImageNet, a
database of images organized in a hierarchy of concepts.13 ImageNet’s hierarchy
comes from Wordnet, a database of words, categories, and the relationships among
them.14 Wordnet’s authors in turn imported the word lists from a number of older
sources, such as thesauri. As a result, WordNet (and ImageNet) categories contain
numerous outmoded words and associations, such as occupations that no longer
exist and stereotyped gender associations.15

We think of technology changing rapidly and society being slow to adapt, but
at least in this instance, the categorization scheme at the heart of much of today’s
machine learning technology has been frozen in time while social norms have
changed.

Our favorite example of measurement bias has to do with cameras, which
we referenced at the beginning of the section as the exemplar of dispassionate
observation and recording. But are they?

The visual world has an essentially infinite bandwidth compared to what can
be captured by cameras, whether film or digital, which means that photography
technology involves a series of choices about what is relevant and what isn’t,
and transformations of the captured data based on those choices. Both film and
digital cameras have historically been more adept at photographing lighter-skinned
individuals.16 One reason is the default settings such as color balance which
were optimized for lighter skin tones. Another, deeper reason is the limited
“dynamic range” of cameras, which makes it hard to capture brighter and darker
tones in the same image. This started changing in the 1970s, in part due to
complaints from furniture companies and chocolate companies about the difficulty
of photographically capturing the details of furniture and chocolate respectively!
Another impetus came from the increasing diversity of television subjects at this
time.

When we go from individual images to datasets of images, we introduce another
layer of potential biases. Consider the image datasets that are used to train today’s
computer vision systems for tasks such as object recognition. If these datasets
were representative samples of an underlying visual world, we might expect that
a computer vision system trained on one such dataset would do well on another
dataset. But in reality, we observe a big drop in accuracy when we train and test
on different datasets.17 This shows that these datasets are biased relative to each
other in a statistical sense, and is a good starting point for investigating whether
these biases include cultural stereotypes.

It’s not all bad news: machine learning can in fact help mitigate measure-
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ment biases. Returning to the issue of dynamic range in cameras, computational
techniques, including machine learning, are making it possible to improve the
representation of tones in images.18, 19, 20 Another example comes from medicine:
diagnoses and treatments are sometimes personalized by race. But it turns out that
race is used as a crude proxy for ancestry and genetics, and sometimes environ-
mental and behavioral factors.21, 22 If we can measure the factors that are medically
relevant and incorporate them—instead of race—into statistical models of disease
and drug response, we can increase the accuracy of diagnoses and treatments while
mitigating racial disparities.

To summarize, measurement involves defining variables of interest, the process
for interacting with the real world and turning observations into numbers, and
then actually collecting the data. Often machine learning practitioners don’t think
about these steps, because someone else has already done those things. And yet
it is crucial to understand the provenance of the data. Even if someone else has
collected the data, it’s almost always too messy for algorithms to handle, hence
the dreaded “data cleaning” step. But the messiness of the real world isn’t just an
annoyance to be dealt with by cleaning. It is a manifestation of a diverse world in
which people don’t fit neatly into categories. Being inattentive to these nuances
can particularly hurt marginalized populations.

From data to models

We’ve seen that training data reflects the disparities, distortions, and biases from
the real world and the measurement process. This leads to an obvious question:
when we learn a model from such data, are these disparities preserved, mitigated,
or exacerbated?

Predictive models trained with supervised learning methods are often good
at calibration: ensuring that the model’s prediction subsumes all features in the
data for the purpose of predicting the outcome. But calibration also means that by
default, we should expect our models to faithfully reflect disparities found in the
input data.

Here’s another way to think about it. Some patterns in the training data (smok-
ing is associated with cancer) represent knowledge that we wish to mine using
machine learning, while other patterns (girls like pink and boys like blue) represent
stereotypes that we might wish to avoid learning. But learning algorithms have
no general way to distinguish between these two types of patterns, because they
are the result of social norms and moral judgments. Absent specific intervention,
machine learning will extract stereotypes, including incorrect and harmful ones, in
the same way that it extracts knowledge.

A telling example of this comes from machine translation. The screenshot on
the right shows the result of translating sentences from English to Turkish and
back.23 The same stereotyped translations result for many pairs of languages and
other occupation words in all translation engines we’ve tested. It’s easy to see
why. Turkish has gender neutral pronouns, and when translating such a pronoun
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Figure 1.3: Translating from English to Turkish, then back to English injects gender
stereotypes.

to English, the system picks the sentence that best matches the statistics of the
training set (which is typically a large, minimally curated corpus of historical text
and text found on the web).

When we build a statistical model of language from such text, we should
expect the gender associations of occupation words to roughly mirror real-world
labor statistics. In addition, because of the male-as-norm bias24 (the use of male
pronouns when the gender is unknown) we should expect translations to favor
male pronouns. It turns out that when we repeat the experiment with dozens
of occupation words, these two factors—labor statistics and the male-as-norm
bias—together almost perfectly predict which pronoun will be returned.23

Here’s a tempting response to the observation that models reflect data biases.
Suppose we’re building a model for scoring resumes for a programming job. What
if we simply withhold gender from the data? Is that a sufficient response to
concerns about gender discrimination? Unfortunately, it’s not that simple, because
of the problem of proxies9 or redundant encodings,25 as we’ll discuss in Chapter
3. There are any number of other attributes in the data that might correlate with
gender. For example, in our society, the age at which someone starts programming
is correlated with gender. This illustrates why we can’t just get rid of proxies: they
may be genuinely relevant to the decision at hand. How long someone has been
programming is a factor that gives us valuable information about their suitability
for a programming job, but it also reflects the reality of gender stereotyping.

Another common reason why machine learning might perform worse for some
groups than others is sample size disparity. If we construct our training set by
sampling uniformly from the training data, then by definition we’ll have fewer data

11



points about minorities. Of course, machine learning works better when there’s
more data, so it will work less well for members of minority groups, assuming that
members of the majority and minority groups are systematically different in terms
of the prediction task.25

Worse, in many settings minority groups are underrepresented relative to
population statistics. For example, minority groups are underrepresented in the
tech industry. Different groups might also adopt technology at different rates,
which might skew datasets assembled form social media. If training sets are drawn
from these unrepresentative contexts, there will be even fewer training points from
minority individuals.

When we develop machine-learning models, we typically only test their overall
accuracy; so a “5% error” statistic might hide the fact that a model performs
terribly for a minority group. Reporting accuracy rates by group will help alert
us to problems like the above example. In Chapter 3, we’ll look at metrics that
quantify the error-rate disparity between groups.

There’s one application of machine learning where we find especially high
error rates for minority groups: anomaly detection. This is the idea of detecting
behavior that deviates from the norm as evidence of abuse against a system. A
good example is the Nymwars controversy, where Google, Facebook, and other tech
companies aimed to block users who used uncommon (hence, presumably fake)
names.

Further, suppose that in some cultures, most people receive names from a small
set of names, whereas in other cultures, names might be more diverse, and it might
be common for names to be unique. For users in the latter culture, a popular name
would be more likely to be fake. In other words, the same feature that constitutes
evidence towards a prediction in one group might constitute evidence against the
prediction for another group.25

If we’re not careful, learning algorithms will generalize based on the majority
culture, leading to a high error rate for minority groups. Attempting to avoid this
by making the model more complex runs into a different problem: overfitting to
the training data, that is, picking up patterns that arise due to random noise rather
than true differences. One way to avoid this is to explicitly model the differences
between groups, although there are both technical and ethical challenges associated
with this.

The pitfalls of action

Any real machine-learning system seeks to make some change in the world. To
understand its effects, then, we have to consider it in the context of the larger
socio-technical system in which it is embedded.

In Chapter 3, we’ll see that if a model is calibrated—it faithfully captures the
patterns in the underlying data—predictions made using that model will inevitably
have disparate error rates for different groups, if those groups have different base
rates, that is, rates of positive or negative outcomes. In other words, understanding
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the properties of a prediction requires understanding not just the model, but
also the population differences between the groups on which the predictions are
applied.

Further, population characteristics can shift over time; this is a well-known
machine learning phenomenon known as drift. If sub-populations change differ-
ently over time, but the model isn’t retrained, that can introduce disparities. An
additional wrinkle: whether or not disparities are objectionable may differ between
cultures, and may change over time as social norms evolve.

When people are subject to automated decisions, their perception of those
decisions depends not only on the outcomes but also the process of decision-
making. An ethical decision-making process might require, among other things,
the ability to explain a prediction or decision, which might not be feasible with
black-box models.

A major limitation of machine learning is that it only reveals correlations, but
we often use its predictions as if they reveal causation. This is a persistent source of
problems. For example, an early machine learning system in healthcare famously
learned the seemingly nonsensical rule that patients with asthma had lower risk of
developing pneumonia. This was a true pattern in the data, but the likely reason
was that asthmatic patients were more likely to receive in-patient care.26 So it’s
not valid to use the prediction to decide whether or not to admit a patient. We’ll
discuss causality in Chapter 5.

Another way to view this example is that the prediction affects the outcome
(because of the actions taken on the basis of the prediction), and thus invalidates
itself. The same principle is also seen in the use of machine learning for predicting
traffic congestion: if sufficiently many people choose their routes based on the
prediction, then the route predicted to be clear will in fact be congested. The effect
can also work in the opposite direction: the prediction might reinforce the outcome,
resulting in feedback loops. To better understand how, let’s talk about the final
stage in our loop: feedback.

Feedback and feedback loops

Many systems receive feedback when they make predictions. When a search engine
serves results, it typically records the links that the user clicks on and how long
the user spends on those pages, and treats these as implicit signals about which
results were found to be most relevant. When a video sharing website recommends
a video, it uses the thumbs up/down feedback as an explicit signal. Such feedback
is used to refine the model.

But feedback is tricky to interpret correctly. If a user clicked on the first link
on a page of search results, is that simply because it was first, or because it was in
fact the most relevant? This is again a case of the action (the ordering of search
results) affecting the outcome (the link(s) the user clicks on). This is an active area
of research; there are techniques that aim to learn accurately from this kind of
biased feedback.27
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Bias in feedback might also reflect cultural prejudices, which is of course much
harder to characterize than the effects of the ordering of search results. For example,
the clicks on the targeted ads that appear alongside search results might reflect
gender and racial stereotypes. There’s a well-known study by Latanya Sweeney
that hints at this: Google searches for Black-sounding names such as “Latanya
Farrell” were much more likely to results in ads for arrest records (“Latanya Farrell,
Arrested?”) than searches for White-sounding names (“Kristen Haring”).28 One
potential explanation is that users are more likely to click on ads that conform to
stereotypes, and the advertising system is optimized for maximizing clicks.

In other words, even feedback that’s designed into systems can lead to unex-
pected or undesirable biases. But on top of that, there are many unintended ways
in which feedback might arise, and these are more pernicious and harder to control.
Let’s look at three.

Self-fulfilling predictions. Suppose a predictive policing system determines certain
areas of a city to be at high risk for crime. More police officers might be deployed to
such areas. Alternatively, officers in areas predicted to be high risk might be subtly
lowering their threshold for stopping, searching, or arresting people—perhaps even
unconsciously. Either way, the prediction will appear to be validated, even if it had
been made purely based on data biases.

Here’s another example of how acting on a prediction can change the outcome.
In the United States, some criminal defendants are released prior to trial, whereas
for others, a bail amount is set as a precondition of release. Many defendants are
unable to post bail. Does the release or detention affect the outcome of the case?
Perhaps defendants who are detained face greater pressure to plead guilty. At any
rate, how could one possibly test the causal impact of detention without doing an
experiment? Intriguingly, we can take advantage of a pseudo-experiment, namely
that defendants are assigned bail judges quasi-randomly, and some judges are
stricter than others. Thus, pre-trial detention is partially random, in a quantifiable
way. Studies using this technique have confirmed that detention indeed causes an
increase in the likelihood of a conviction.29 If bail were set based on risk predictions,
whether human or algorithmic, and we evaluated its efficacy by examining case
outcomes, we would see a self-fulfilling effect.

Predictions that affect the training set. Continuing this example, predictive policing
activity will lead to arrests, records of which might be added to the algorithm’s
training set. These areas might then continue to appear to be at high risk of crime,
and perhaps also other areas with a similar demographic composition, depending
on the feature set used for predictions. The disparities might even compound over
time.

A 2016 paper by Lum and Isaac analyzed a predictive policing algorithm by
PredPol. This is of the few predictive policing algorithms to be published in
a peer-reviewed journal, for which the company deserves praise. By applying
the algorithm to data derived from Oakland police records, the authors found
that Black people would be targeted for predictive policing of drug crimes at
roughly twice the rate of White people, even though the two groups have roughly
equal rates of drug use.30 Their simulation showed that this initial bias would be
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amplified by a feedback loop, with policing increasingly concentrated on targeted
areas. This is despite the fact that the PredPol algorithm does not explicitly take
demographics into account.

A follow-up paper built on this idea and showed mathematically how feedback
loops occur when data discovered on the basis of predictions are used to update
the model.31 The paper also shows how to tweak the model to avoid feedback
loops in a simulated setting: by quantifying how surprising an observation of crime
is given the predictions, and only updating the model in response to surprising
events.

Predictions that affect the phenomenon and society at large. Prejudicial policing on
a large scale, algorithmic or not, will affect society over time, contributing to the
cycle of poverty and crime. This is a well-trodden thesis, and we’ll briefly review
the sociological literature on durable inequality and the persistence of stereotypes
in Chapter 8.

Let us remind ourselves that we deploy machine learning so that we can act on
its predictions. It is hard to even conceptually eliminate the effects of predictions
on outcomes, future training sets, the phenomena themselves, or society at large.
The more central machine learning becomes in our lives, the stronger this effect.

Returning to the example of a search engine, in the short term it might be
possible to extract an unbiased signal from user clicks, but in the long run, results
that are returned more often will be linked to and thus rank more highly. As
a side effect of fulfilling its purpose of retrieving relevant information, a search
engine will necessarily change the very thing that it aims to measure, sort, and
rank. Similarly, most machine learning systems will affect the phenomena that
they predict. This is why we’ve depicted the machine learning process as a loop.

Throughout this book we’ll learn methods for mitigating societal biases in
machine learning, but we should keep in mind that there are fundamental lim-
its to what we can achieve, especially when we consider machine learning as
a socio-technical system instead of a mathematical abstraction. The textbook
model of training and test data being independent and identically distributed is a
simplification, and might be unachievable in practice.

Getting concrete with a toy example

Now let’s look at a concrete setting, albeit a toy problem, to illustrate many of the
ideas discussed so far, and some new ones.

Let’s say you’re on a hiring committee, making decisions based on just two
attributes of each applicant: their college GPA and their interview score (we did
say it’s a toy problem!). We formulate this as a machine-learning problem: the
task is to use these two variables to predict some measure of the “quality” of an
applicant. For example, it could be based on the average performance review score
after two years at the company. We’ll assume we have data from past candidates
that allows us to train a model to predict performance scores based on GPA and
interview score.
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Figure 1.4: Toy example: a hiring classifier that predicts job performance (not
shown) based on GPA and interview score, and then applies a cutoff.

Obviously, this is a reductive formulation—we’re assuming that an applicant’s
worth can be reduced to a single number, and that we know how to measure that
number. This is a valid criticism, and applies to most applications of data-driven
decision-making today. But it has one big advantage: once we do formulate the
decision as a prediction problem, statistical methods tend to do better than humans,
even domain experts with years of training, in making decisions based on noisy
predictors.

Given this formulation, the simplest thing we can do is to use linear regression
to predict the average job performance rating from the two observed variables, and
then use a cutoff based on the number of candidates we want to hire. The figure
above shows what this might look like. In reality, the variables under consideration
need not satisfy a linear relationship, thus suggesting the use of a non-linear model,
which we avoid for simplicity.

As you can see in the figure, our candidates fall into two demographic groups,
represented by triangles and squares. This binary categorization is a simplification
for the purposes of our thought experiment. But when building real systems,
enforcing rigid categories of people can be ethically questionable.

Note that the classifier didn’t take into account which group a candidate
belonged to. Does this mean that the classifier is fair? We might hope that it is,
based on the fairness-as-blindness idea, symbolized by the icon of Lady Justice
wearing a blindfold. In this view, an impartial model—one that doesn’t use the
group membership in the regression—is fair; a model that gives different scores to
otherwise-identical members of different groups is discriminatory.

We’ll defer a richer understanding of what fairness means to later chapters, so
let’s ask a simpler question: are candidates from the two groups equally likely
to be positively classified? The answer is no: the triangles are more likely to be
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selected than the squares. That’s because data is a social mirror; the “ground truth”
labels that we’re predicting—job performance ratings—are systematically lower for
the squares than the triangles.

There are many possible reasons for this disparity. First, the managers who
score the employees’ performance might discriminate against one group. Or
the overall workplace might be less welcoming one group, preventing them from
reaching their potential and leading to lower performance. Alternately, the disparity
might originate before the candidates were hired. For example, it might arise from
disparities in educational institutions attended by the two groups. Or there might
be intrinsic differences between them. Of course, it might be a combination of these
factors. We can’t tell from our data how much of the disparity is attributable to
these different factors. In general, such a determination is methodologically hard,
and requires causal reasoning.32

For now, let’s assume that we have evidence that the level of demographic
disparity produced by our selection procedure is unjustified, and we’re interested
in intervening to decrease it. How could we do it? We observe that GPA is
correlated with the demographic attribute—it’s a proxy. Perhaps we could simply
omit that variable as a predictor? Unfortunately, we’d also hobble the accuracy of
our model. In real datasets, most attributes tend to be proxies for demographic
variables, and dropping them may not be a reasonable option.

Another crude approach is to pick different cutoffs so that candidates from
both groups have the same probability of being hired. Or we could mitigate the
demographic disparity instead of eliminating it, by decreasing the difference in the
cutoffs.

Given the available data, there is no mathematically principled way to know
which cutoffs to pick. In some situations there is a legal baseline: for example,
guidelines from the U.S. Equal Employment Opportunity Commission state that
if the probability of selection for two groups differs by more than 20%, it might
constitute a sufficient disparate impact to initiate a lawsuit. But a disparate impact
alone is not illegal; the disparity needs to be unjustified or avoidable for courts to
find liability. Even these quantitative guidelines do not provide easy answers or
bright lines.

At any rate, the pick-different-thresholds approach to mitigating disparities
seems unsatisfying, because it is crude and uses the group attribute as the sole
criterion for redistribution. It does not account for the underlying reasons why
two candidates with the same observable attributes (except for group membership)
may be deserving of different treatment.

But there are other possible interventions, and we’ll discuss one. To motivate it,
let’s take a step back and ask why the company wants to decrease the demographic
disparity in hiring.

One answer is rooted in justice to individuals and the specific social groups to
which they belong. But a different answer comes from the firm’s selfish interests:
diverse teams work better.33, 34 From this perspective, increasing the diversity of
the cohort that is hired would benefit the firm and everyone in the cohort. As an
analogy, picking 11 goalkeepers, even if individually excellent, would make for a
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poor soccer team.
How do we operationalize diversity in a selection task? If we had a distance

function between pairs of candidates, we could measure the average distance
between selected candidates. As a strawman, let’s say we use the Euclidean
distance based on the GPA and interview score. If we incorporated such a diversity
criterion into the objective function, it would result in a model where the GPA is
weighted less. This technique doesn’t explicitly consider the group membership.
Rather, as a side-effect of insisting on diversity of the other observable attributes,
it also improves demographic diversity. However, a careless application of such
an intervention can easily go wrong: for example, the model might give weight to
attributes that are completely irrelevant to the task.

More generally, there are many possible algorithmic interventions beyond
picking different thresholds for different groups. In particular, the idea of a
similarity function between pairs of individuals is a powerful one, and we’ll see
other interventions that make use of it. But coming up with a suitable similarity
function in practice isn’t easy: it may not be clear which attributes are relevant,
how to weight them, and how to deal with correlations between attributes.

Justice beyond fair decision making

The core concern of this book is group disparities in decision making. But ethical
obligations don’t end with addressing those disparities. Fairly rendered decisions
under unfair circumstances may do little to improve people’s lives. In many cases,
we cannot achieve any reasonable notion of fairness through changes to decision-
making alone; we need to change the conditions under which these decisions are
made. In other cases, the very purpose of the system might be oppressive, and we
should ask whether it should be deployed at all.

Further, decision making systems aren’t the only places where machine learning
is used that can harm people: for example, online search and recommendation
algorithms are also of concern, even though they don’t make decisions about
people. Let’s briefly discuss these broader questions.

Interventions that target underlying inequities

Let’s return to the hiring example above. When using machine learning to make
predictions about how someone might fare in a specific workplace or occupation,
we tend to treat the environment that people will confront in these roles as a
constant and ask how people’s performance will vary according to their observable
characteristics. In other words, we treat the current state of the world as a given,
leaving us to select the person who will do best under these circumstances. This
approach risks overlooking more fundamental changes that we could make to the
workplace (culture, family friendly policies, on-the-job training) that might make it
a more welcoming and productive environment for people that have not flourished
under previous conditions.35
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The tendency with work on fairness in machine learning is to ask whether
an employer is using a fair selection process, even though we might have the
opportunity to intervene in the workplace dynamics that actually account for
differences in predicted outcomes along the lines of race, gender, disability, and
other characteristics.36

We can learn a lot from the so-called social model of disability, which views
a predicted difference in a disabled person’s ability to excel on the job as the
result of a lack of appropriate accommodations (an accessible workplace, necessary
equipment, flexible working arrangements) rather than any inherent capacity of
the person. A person is only disabled in the sense that we have not built physical
environments or adopted appropriate policies to ensure their equal participation.

The same might be true of people with other characteristics, and changes to
the selection process alone will not help us address the fundamental injustice of
conditions that keep certain people from contributing as effectively as others. We
examine these questions in Chapter 8.

It may not be ethical to deploy an automated decision-making system at all if
the underlying conditions are unjust and the automated system would only serve
to reify it. Or a system may be ill-conceived, and its intended purpose may be
unjust, even if it were to work flawlessly and perform equally well for everyone.
The question of which automated systems should be deployed shouldn’t be left to
the logic (and whims) of the marketplace. For example, we may want to regulate
the police’s access to facial recognition. Our civil rights—freedom or movement
and association—are threatened by these technologies both when they fail and
when they work well. These are concerns about the legitimacy of an automated
decision making system, and we explore them in Chapter 2.

The harms of information systems

When a defendant is unjustly detailed pre-trial, the harm is clear. But beyond algo-
rithmic decision making, information systems such as search and recommendation
algorithms can also have negative effects, but here the harm is indirect and harder
to define.

Here’s one example. Image search results for occupation terms such as CEO
or software developer reflect (and arguably exaggerate) the prevailing gender
composition and stereotypes about those occupations.37 Another example that we
encountered earlier is the gender stereotyping in online translation. These and other
examples that are disturbing to varying degrees—such as Google’s app labeling
photos of Black Americans as “gorillas”, or offensive results in autocomplete—seem
to fall into a different moral category than, say, a discriminatory system used in
criminal justice, which has immediate and tangible consequences.

A talk by Kate Crawford lays out the differences.38 When decision-making
systems in criminal justice, health care, etc. are discriminatory, they create allocative
harms, which are caused when a system withholds certain groups an opportunity or
a resource. In contrast, the other examples—stereotype perpetuation and cultural
denigration—are examples of representational harms, which occur when systems
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reinforce the subordination of some groups along the lines of identity—race, class,
gender, etc.

Allocative harms have received much attention both because their effects are
immediate, and because they are easier to formalize and study in computer science
and in economics. Representational harms have long-term effects, and resist
formal characterization. But as machine learning has become a part of how we
make sense of the world—through technologies such as search, translation, voice
assistants, and image labeling—representational harms will leave an imprint on our
culture, and influence identity formation and stereotype perpetuation. Thus, these
are critical concerns for the fields of natural language processing and computer
vision. Although this book is primarily about allocative harms, we will briefly
representational harms in Chapters 7 and 9.

The majority of content consumed online is mediated by recommendation
algorithms that influence which users see which content. Thus, these algorithms in-
fluence which messages are amplified. Social media algorithms have been blamed
for a litany of ills: echo chambers in which users are exposed to content that
conforms to their prior beliefs; exacerbating political polarization; radicalization
of some users into fringe beliefs; stoking ethnic resentment and violence; a deteri-
oration of mental health; and so on. Research on these questions is nascent and
establishing causality is hard, and it remains unclear how much of these effects are
due to the design of the algorithm versus user behavior. But there is little doubt that
algorithms have some role. Twitter experimentally compared a non-algorithmic
(reverse chronological) content feed to an algorithmic feed, and found that content
from the mainstream political right was consistently favored in the algorithmic
setting than content from the mainstream political left.39 While important, this
topic is out of scope for us. However, we briefly touch on discrimination in ad
targeting and in online marketplaces in Chapter 7.

Our outlook: limitations and opportunities

We’ve seen how machine learning propagates inequalities in the state of the world
through the stages of measurement, learning, action, and feedback. Machine
learning systems that affect people are best thought of as closed loops, since the
actions we take based on predictions in turn affect the state of the world. One
major goal of fair machine learning is to develop an understanding of when these
disparities are harmful, unjustified, or otherwise unacceptable, and to develop
interventions to mitigate such disparities.

There are fundamental challenges and limitations to this goal. Unbiased mea-
surement might be infeasible even in principle, such as when the construct itself
(e.g. race) is unstable. There are additional practical limitations arising from the fact
that the decision maker is typically not involved in the measurement stage. Further,
observational data can be insufficient to identify the causes of disparities, which
is needed in the design of meaningful interventions and in order to understand
the effects of intervention. Most attempts to “debias” machine learning in the
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current research literature assume simplistic mathematical systems, often ignoring
the effect of algorithmic interventions on individuals and on the long-term state of
society.

Despite these important limitations, there are reasons to be cautiously optimistic
about fairness and machine learning. First, data-driven decision-making has
the potential to be more transparent compared to human decision-making. It
forces us to articulate our decision-making objectives and enables us to clearly
understand the tradeoffs between desiderata. However, there are challenges to
overcome to achieve this potential for transparency. One challenge is improving the
interpretability and explainability of modern machine learning methods, which is
a topic of vigorous ongoing research. Another challenge is the proprietary nature
of datasets and systems that are crucial to an informed public debate on this topic.
Many commentators have called for a change in the status quo.40

Second, effective interventions do exist in many machine learning applications,
especially in natural-language processing and computer vision. Tasks in these
domains (say, transcribing speech) are subject to less inherent uncertainty than
traditional decision-making (say, predicting if a loan applicant will repay), removing
some of the statistical constraints that we’ll study in Chapter 3.

Our final and most important reason for optimism is that the turn to automated
decision-making and machine learning offers an opportunity to reconnect with the
moral foundations of fairness. Algorithms force us to be explicit about what we
want to achieve with decision-making. And it’s far more difficult to paper over our
poorly specified or true intentions when we have to state these objectives formally.
In this way, machine learning has the potential to help us debate the fairness of
different policies and decision-making procedures more effectively.

We should not expect work on fairness in machine learning to deliver easy
answers. And we should be suspicious of efforts that treat fairness as something
that can be reduced to an algorithmic stamp of approval. We must try to confront,
not avoid, the hard questions when it comes to debating and defining fairness.
We may even need to reevaluate the meaningfulness and enforceability of existing
approaches to discrimination in law and policy,9 expanding the tools at our disposal
to reason about fairness and seek out justice.

We hope that this book can play a small role in stimulating this interdisciplinary
inquiry.

Bibliographic notes and further reading

This chapter draws from several taxonomies of biases in machine learning and
data-driven decision-making: a blog post by Moritz Hardt,25 a paper by Barocas
and Selbst,9 and a 2016 report by the White House Office of Science and Technology
Policy.41 For a broad survey of challenges raised by AI, machine learning, and
algorithmic systems, see the AI Now report.42

An early work that investigated fairness in algorithmic systems is by Friedman
and Nissenbaum in 1996.43 Papers studying demographic disparities in classifica-

21



tion began appearing regularly starting in 2008;44 the locus of this research was in
Europe, and in the data mining research community. With the establishment of the
FAT/ML workshop in 2014, a new community emerged, and the topic has since
grown in popularity. Several popular-audience books have delivered critiques of
algorithmic systems in modern society: The Black Box Society by Frank Pasquale,45

Weapons of Math Destruction by Cathy O’Neill,46 Automating inequality by Virginia
Eubanks,47 and Algorithms of Oppression by Safiya Noble.48
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2
When is automated decision making legitimate?

These three scenarios have something in common:

• A student is proud of the creative essay she wrote for a standardized test.
She receives a perfect score, but is disappointed to learn that the test had in
fact been graded by a computer.

• A defendant finds that a criminal risk prediction system categorized him
as high risk for failure to appear in court, based on the behavior of others
like him, despite his having every intention of appearing in court on the
appointed date.

• An automated system locked out a social media user for violating the plat-
form’s policy on acceptable behavior. The user insists that they did nothing
wrong, but the platform won’t provide further details nor any appeal process.

All of these are automated decision-making or decision support systems that
likley feel unfair or unjust. Yet this is a sense of unfairness that is distinct from
what we talked about in the first chapter (and which we will return to in the next
chapter). It is not about the relative treatment of different groups. Instead, what
these questions are about is legitimacy — whether it is fair to deploy such a system
at all in a given scenario. That question, in turn, affects the legitimacy of the
organization deploying it.

Most institutions need legitimacy to be able to function effectively. People have
to believe that the institution is broadly aligned with social values. The reason for
this is relatively clear in the case of public institutions such as the government, or
schools, which are directly or indirectly accountable to the public.

It is less clear why private firms need legitimacy. One answer is that the more
power a firm has over individuals, the more the exercise of that power needs to
be perceived as legitimate. And decision making about people involves exercising
power over them, so it is important to ensure legitimacy. Otherwise, people will
find various ways to resist, notably through law. A loss of legitimacy might also
hurt a firm’s ability to compete in the market.

Questions about firms’ legitimacy have repeatedly come up in the digital
technology industry. For example, ride sharing firms have faced such questions,
leading to activism, litigation, and regulation. Firms whose business models rely
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on personal data, especially covertly collected data, have also undergone crises
of perception. In addition to legal responses, such firms have seen competitors
capitalize on their lax privacy practices. For instance, Apple made it harder
for Facebook to track users on iOS, putting a dent in its revenue.49 This move
enjoyed public support despite Facebook’s vociferous protests, arguably because
the underlying business model had lost legitimacy.

For these reasons, a book on fairness is incomplete without a discussion of legit-
imacy. Moreover, the legitimacy question should precede other fairness questions.
Debating distributive justice in the context of a fundamentally unjust institution is
at best a waste of time, and at worst helps prop up the institution’s legitimacy, and
is thus counterproductive. For example, improving facial analysis technology to
decrease the disparity in error rates between racial groups is not a useful response
to concerns about the use of such technologies for oppressive purposes.50

Discussions of legitimacy have been largely overshadowed by discussions of
bias and discrimination in the fairness discourse. Often, advocates have chosen
to focus on distributional considerations as a way of attacking legitimacy, since it
tends to be easier argument to make. But this can backfire, as many firms have co-
opted fairness discourse, and find it relatively easy to ensure parity in the decisions
between demographic groups without addressing the legitimacy concerns.51

This chapter is all about legitimacy: whether it is morally justifiable to use
machine learning or automated methods at all in a given scenario.

Although we have stressed the overriding importance of legitimacy, readers
interested in distributive questions may skip to Chapter 3 for a technical treatment
or to Chapter 4 for a normative account; those chapters, Chapter 3 in particular, do
not directly build on this one.

Machine learning is not a replacement for human decision making

Machine learning plays an important role in decisions that allocate resources
and opportunities that are critical to people's life chances. The stakes are clearly
high. But people have been making high stakes decisions about each other for a
long time, and those decisions seem to be subject to far less critical examination.
Here’s a strawman view: decisions based on machine learning are analogous to
decision making by humans, and so machine learning doesn’t warrant special
concern. While it’s true that machine learning models might be difficult for people
to understand, humans are black boxes, too. And while there can be systematic
bias in machine learning models, they are often demonstrably less biased than
humans.

We reject this analogy of machine learning to human decision making. By
understanding why it fails and which analogies are more appropriate, we’ll develop
a better appreciation for what makes machine learning uniquely dangerous as a
way of making high-stakes decisions.

While machine learning is sometimes used to automate the tasks performed
inside a human’s head, many of the high-stakes decisions that are the focus of
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the work on fairness and machine learning are those that have been traditionally
performed by bureaucracies. For example, hiring, credit, and admissions decisions
are rarely left to one person to make on their own as they see fit. Instead, these
decisions are guided by formal rules and procedures, involving many actors with
prescribed roles and responsibilities. Bureaucracy arose in part as a response to
the subjectivity, arbitrariness, and inconsistency of human decision making; its
institutionalized rules and procedures aim to minimize the effects of humans’
frailties as individual decision makers.52

Of course, bureaucracies aren’t perfect. The very term bureaucracy tends to
have a negative connotation — a needlessly convoluted process that is difficult or
impossible to navigate. And despite their overly formalistic (one might say cold)
approach to decision making, bureaucracies rarely succeed in fully disciplining
the individual decision makers that occupy their ranks. Bureaucracies risk being
equally capricious and inscrutable as humans, but far more dehumanizing.52

That’s why bureaucracies often incorporate procedural protections: mechanisms
that ensure that decisions are made transparently, on the basis of the right and
relevant information, and with the opportunity for challenge and correction. Once
we realize that machine learning is being used to automate bureaucratic rather
than individual decisions, asserting that humans don’t need to — or simply cannot
— account for their everyday decisions does not excuse machine learning from
these expectations. As Katherine Strandburg has argued, “[r]eason giving is a
core requirement in conventional decision systems precisely because human decision
makers are inscrutable and prone to bias and error, not because of any expectation
that they will, or even can, provide accurate and detailed descriptions of their
thought processes”.53

In analogizing machine learning to bureaucratic — rather than individual —
decision making, we can better appreciate the source of some of the concerns about
machine learning. When it is used in high-stakes domains, it undermines the kinds
of protections that we often put in place to ensure that bureaucracies are engaged
in well-executed and well-justified decision making.

Bureaucracy as a bulwark against arbitrary decision making

The kind of problematic decision making that bureaucracies protect against can
be called arbitrary decision making. Kathleen Creel and Deborah Hellman have
usefully distinguished betweeen two flavors of arbitrariness.54 First, arbitrariness
might refer to decisions made on an inconsistent or ad hoc basis. Second, arbi-
trariness might refer to the basis for decision making lacking reasoning, even if
the decisions are made consistently on that basis. This first view of arbitrariness
is principally concerned with procedural regularity:55 whether a decision making
scheme is executed consistently and correctly. Worries about arbitrariness, in this
case, are really worries about whether the rules governing important decisions are
fixed in advance and applied appropriately, with the goal of reducing decision
makers’ capacity to make decisions in a haphazard manner.
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When decision making is arbitrary in this sense of the term, individuals may
find that they are subject to different decision-making schemes and receive different
decisions simply because they happen to go through the decision-making process
at different times. Not only might the decision-making scheme change over time;
human decision makers might be inconsistent in how they apply these schemes
as they make their way through different cases. The latter could be true of one
individual decision maker whose behavior is inconsistent over time, but it could
also be true if the decision-making process allocates cases to different individuals
who are individually consistent, but differ from one another. Thus, even two people
who are identical when it comes to the decision criteria may receive different
decisions, violating the expectation that similar people should be treated similarly
when it comes to high-stakes decisions.

This principle is premised on the belief that people are entitled to similar
decisions unless there are reasons to treat them differently (we’ll soon address
what determines if these are good reasons). For especially consequential decisions,
people may have good reason to wonder why someone who resembled them
received the desired outcome from the decision-making process while they did not.

Inconsistency is also problematic when it prevents people from developing
effective life plans based on expectations about the decision-making systems they
must navigate in order to obtain desirable resources and opportunities.54 Thus,
inconsistent decision making is unjust both because it might result in unjustified
differential treatment of similar individuals and also because it is a threat to
individual autonomy by preventing people from making effective decisions about
how best to pursue their life goals.

The second view of arbitrariness is getting at a deeper concern: are there good
reasons — or any reasons — why the decision-making scheme looks the way that
it does? For example, if a coach picks a track team based on the color of runners’
sneakers, but does so consistently, it is still arbitrary because the criterion lacks a
valid basis. It does not help advance the decision maker’s goals (e.g., assembling a
team of runners that will win the upcoming meet).

Arbitrariness, from this perspective, is problematic because it undermines a
bedrock justification for the chosen decision-making scheme: that it actually helps
to advance the goals of the decision maker. If the decision-making scheme does
nothing to serve these goals, then there is no justified reason to have settled on
that decision-making scheme — and to treat people accordingly. When desirable
resources and opportunities are allocated arbitrarily, it needlessly subjects indi-
viduals to different decisions, despite the fact that all individuals may have equal
interest in these resources and opportunities.

In the context of government decision making, there is often a legal requirement
that there be a rational basis for decision making — that is, that there be good
reasons for making decisions in the way that they are.54 Rules that do not help the
government achieve its stated policy goals run afoul of the principles of due process.
This could be either because the rules were chosen arbitrarily or because of some
evident fault with the reasoning behind these rules. These requirements stem from
the fact that the government has a monopoly over certain highly consequential
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decisions, leaving people with no opportunity to seek recourse by trying their case
with another decision maker.

There is no corresponding legal obligation when the decision makers are private
actors, as Creel and Hellman point out. Companies are often free to make poorly
reasoned — even completely arbitrary — decisions. In theory, decision-making
schemes that seem to do nothing to advance private actors’ goals should be pushed
out of the market by competing schemes that are more effective.54

Despite this, we often expect that decisions of major consequence, even when
they are made by private actors, are made for good reasons. We are not likely
to tolerate employers, lenders, or admission officers that make decisions about
applicants by flipping a coin or according to the color of applicants’ sneakers. Why
might this be?

Arbitrary decision making fails to respect the gravity of these decisions and
shows a lack of respect for the people subject to them. Even if we accept that we
cannot dictate the goals of institutions, we still object to giving them complete
freedom to treat people however they like. When the stakes are sufficiently high,
decision makers bear some burden for justifying their decision-making schemes
out of respect for the interests of people affected by these decisions. The fact that
people might try their luck with other decision makers in the same domain (e.g.,
another employer, lender, or admission officer) may do little to modulate these
expectations.

Three Forms of Automation

To recap our earlier discussion, automation might undermine important procedural
protections in bureaucratic decision making. But what, exactly, does machine
learning help to automate? It turns out that there are three different types of
automation.

The first kind of automation involves taking decision-making rules that have
been set down by hand (e.g., worked out through a traditional policy-making
process) and translating these into software, with the goal of automating their ap-
plication to particular cases.56 For example, many government agencies follow this
approach when they adopt software to automate benefits eligibility determinations
in accordance with pre-existing policies. Likewise, employers follow this approach
when they identify certain minimum qualifications for a job and develop software
to automatically reject applicants that do not possess them. In both of these cases,
the rules are still set by humans, but their application is automated by a computer;
machine learning has no obvious role here.

But what about cases where human decision makers have primarily relied
on informal judgment rather than formally specified rules? This is where the
second kind of automation comes in. It uses machine learning to figure out how to
replicate the informal judgements of humans. Having automatically discovered a
decision-making scheme that produces the same decisions as humans have made
in the past, it then implements this scheme in software to replace the humans who

27



had been making these decisions. The student whose creative essay was subject to
computerized assessment, described in the opening of this chapter, is an example
of just such an approach: the software in this case seeks to replicate the subjective
evaluations of human graders.

The final kind of automation is quite different from the first two. It does not rely
on an existing bureaucratic decision making scheme or human judgment. Instead,
it involves learning decision-making rules from data. It uses a computer to uncover
patterns in a dataset that predict an outcome or property of policy interest — and
then bases decisions on those predictions. Note that such rules could be applied
either manually (by humans) or automatically (through software). The relevant
point of automation, in this case, is in the process of developing the rules, not
necessarily applying them. For example, these could be rules that instruct police to
patrol certain areas, given predictions about the likely incidence of crime based on
past observations of crime. Or they could be rules that suggest that lenders grant
credit to certain applicants, given the repayment histories of past recipients like
them. Machine learning — and other statistical techniques — are crucial to this
form of automation.

As we’ll see over the next three sections, each type of automation raises its own
unique concerns.

Automating Pre-Existing Decision-Making Rules

In many respects, the first form of automation — translating pre-existing rules into
software so that decisions can be executed automatically — is a direct response
to arbitrariness as inconsistency. Automation helps ensure consistency in decision
making because it requires that the scheme for making decisions be fixed. It also
means that the scheme is applied the same way every time.

And yet, many things can go wrong. Danielle Citron offers a compelling
account of the dangers of automating decision-making rules established via a
deliberative policy-making or rule-making process.56 Automating the execution of
a pre-existing decision-making scheme requires translating such a scheme into code.
Programmers might make errors in that process, leading to automated decisions
that diverge from the policy that the software is meant to execute. Another
problem is that the policy that programmers are tasked with automating may be
insufficiently explicit or precise; in the face of such ambiguity, programmers might
take it upon themselves to make their own judgment calls, effectively usurping the
authority to define policy. And at the most basic level, software may be buggy. For
example, hundreds of British postmasters were convicted for theft or fraud over a
twenty year period based on flawed software in what has been called the biggest
miscarriage of justice in British history.57

Automating decision making can also be problematic when it completely stamps
out any room for discretion. While human discretion presents its own issues, as
described above, it can be useful when it is difficult or impossible to fully specify
how decisions should be made in accordance with the goals and principles of the
institution.58 Automation requires that an institution determine in advance all of
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the criteria that a decision-making scheme will take into account; there is no room
to consider the relevance of additional details that might not have been considered
or anticipated at the time that the software was developed.

Automated decision-making is thus likely to be much more brittle than decision-
making that involves manual review because it limits the opportunity for decision
subjects to introduce information into the decision-making process. People are
confined to providing evidence that corresponds to a pre-established field in the
software. Such constraints can result in absurd situations in which the strict
application of decision-making rules leads to outcomes that are directly counter to
the goals behind these rules. New evidence that would immediately reverse the
assessment of a human decision maker may have no place in automated decision
making.59 For example, in an automated system to assess people with illnesses to
determine eligibility for a state-provided caregiver, one field asked if there were
any foot problems. An assessor visited a certain person and filled out the field to
indicate that they didn’t have any problems — because they were an amputee.60

Discretion is valuable in these cases because humans are often able to reflect on
the relevance of additional information to the decision at hand and the underlying
goal that such decisions are meant to serve. In effect, human review leaves room
to expand the criteria under consideration and to reflect on when the mechanical
application of the rules fails to serve their intended purpose.61, 59

These same constraints can also restrict people’s ability to point out errors
or to challenge the ultimate decision.62 When interacting with a loan officer, a
person could point out that their credit file contains erroneous information. When
applying for a loan via an automated process, they might have no equivalent
opportunity. Or perhaps a person recognizes that the rules dictating their eligibility
for government benefits have been applied incorrectly. When caseworkers are
replaced by software, people subject to these decisions may have no means to raise
justified objections.63

Finally, automation runs the serious risk of limiting accountability and exacer-
bating the dehumanizing effects of dealing with bureaucracies. Automation can
make it difficult to identify the agent responsible for a decision; software often has
the effect of dispersing the locus of accountability because the decision seems to be
made by no one.64 People may have more effective means of disputing decisions
and contesting the decision-making scheme when decision-making is vested in
identifiable people. Likewise, automation’s ability to remove humans from the
decision-making process may contribute to people’s sense that an institution does
not view them as worthy of the respect that would grant them an opportunity to
make legitimate corrections, introduce additional relevant information, or describe
mitigating circumstances.65 This is precisely the problem highlighted by the open-
ing example of a social media user who had been kicked off a platform without
explanation or opportunity for appeal.

We’ve highlighted many normative concerns that arise from simply automating
the application of a pre-existing decision-making scheme. While many of these
issues are commonly attributed to the adoption of machine learning, none of them
originate from the use of machine learning specifically. Long-standing efforts to
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automate decision-making with traditional software pose many dangers of their
own. The fact that machine learning is not the exclusive cause of these types of
problems is no reason to take them any less seriously, but effective responses to
these problems requires that we be clear about their origins.

Learning Decision-Making Rules from Data on Past Decisions in order to Automate
Them

Decision makers might have a pre-existing but informal process for making deci-
sions which they might like to automate. In this case, machine learning (or other
statistical techniques) might be employed to “predict” how a human would make
a decision, given certain criteria. The goal isn’t necessarily to perfectly recover
the specific weight that past decision makers had implicitly assigned to different
criteria, but rather to ensure that the model produces a similar set of decisions as
humans. To return to one of our recurring examples, an educational institution
might want to automate the process of grading essays, and it might attempt to do
that by relying on machine learning to learn to mimic the grades teachers have
assigned to similar work in the past.

This form of automation might help to address concerns with arbitrariness
in human decision making by formalizing and fixing a decision-making scheme
similar to what humans might have been employing in the past. In this respect,
machine learning might be desirable because it can help to smooth out any incon-
sistencies in the human decisions from which it has induced some decision-making
rule. For example, the essay grading model described above might reduce some
of the variance observed in the grading of teachers whose subjective evaluations
the model is learning to replicate. Automation can once again help to address
concerns with arbitrariness understood as inconsistency, even when it is subjective
judgments that are being automated.

A few decades ago, there was a popular approach to automation that relied
on explicitly encoding the reasoning that humans relied on to make decisions.66

This approach, called expert systems, failed for many reasons, including the fact
that people aren’t always able to explain their own reasoning.67 Expert systems
eventually gave way to the approach of simply asking people to label examples
and having learning algorithms discover how to best predict the label that humans
would assign. While this approach has proved powerful, it has its dangers.

First, it may give the veneer of objective assessment to decision-making schemes
that simply automate the subjective judgment of humans. As a result, people may
be more likely to view its decisions as less worthy of critical investigation. This is
particularly worrisome because learning decision-making rules from the previous
decisions made by humans runs the obvious risk of replicating and exaggerating
any objectionable qualities of human decision making by learning from the bad
examples set by humans. (In fact, many attempts to learn a rule to predict some
seemingly objective target of interest — the form of automation that we’ll discuss
in the next section — are really just a version of replicating human judgment
in disguise. If we can’t obtain objective ground truth for the chosen target of
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prediction, there is no way to escape human judgment. As David Hand points out,
humans will often need to exercise discretion in specifying and identifying what
counts as an example of the target.68)

Second, such decision-making schemes may be regarded as equivalent to those
employed by humans and thus likely to operate in the same way, even though
the model might reach its decisions differently and produce quite different error
patterns.69 Even when the model is able to predict the decisions that humans
would make given any particular input with a high degree of accuracy, there is no
guarantee that the model will have inherited all of the nuance and considerations
that go into human decision-making. Worse, models might also learn to rely on
criteria in ways that humans would find worrisome or objectionable, even if doing
so still produces a similar set of decisions as humans would make.70 For example,
a model that automates essay grading by assigning higher scores to papers that
employ sophisticated vocabulary may do a reasonably good job replicating the
judgments of human graders (likely because higher quality writing tends to rely
on more sophisticated vocabulary), but checking for the presense of certain words
is unlikely to be a reliable substitute for assessing an essay for logical coherence
and factual correctness.71

In short, the use of machine learning to automate decisions previously per-
formed by humans can be problematic because it can end up being both too much
like human decision makers and too different from them.

Deriving Decision-Making Rules by Learning to Predict a Target

The final form of automation is one in which decision makers rely on machine
learning to learn a decision-making rule or policy from data. This form of automa-
tion, which we’ll call predictive optimization, speaks directly to concerns with
reasoned decision making. Note that neither of the first two forms of automation
does so. Consistently executing a pre-existing policy via automation does not
ensure that the policy itself is a reasoned one. Nor does relying on past human
decisions to induce a decision-making rule guarantee that the basis for automated
decision making will reflect reasoned judgments. In both cases, the decision mak-
ing scheme will only be as reasoned as the formal policy or informal judgments
whose execution is being automated.

In contrast, predictive optimization tries to provide a more rigorous foundation
for decision making by only relying on criteria to the extent that they demonstrably
predict the outcome or quality of interest. When employed in this manner, machine
learning seems to ensure reasoned decisions because the criteria that have been
incorporated into the decision making scheme — and their particular weighing —
are dictated by how well they predict the target. And so long as the chosen target
is a good proxy for decision makers’ goals, relying on criteria that predict this
target to make decisions would seem well reasoned because doing so will help to
achieve decision makers’ goals.

Unlike the first two forms of automation, predictive optimization is a radical
departure from the traditional approach to decision making. In the traditional
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approach, a set of decision makers has some goal — even if this goal is amorphous
and hard to specify — and would like to develop an explicit decision-making
scheme to help realize their goal. They engage in discussion and deliberation to
try to come to some agreement about the criteria that are relevant to the decision
and the weight to assign to each criterion in the decision-making scheme. Relying
on intuition, prior evidence, and normative reasoning, decision makers will choose
and combine features in ways that are thought to help realize their goals.

The statistical or machine learning approach works differently. First, the
decision makers try to identify an explicit target for prediction which they view as
synonymous with their goal — or a reasonable proxy for it. In a college admissions
scenario, one goal might be scholastic achievement in college, and college GPA
might be a proxy for it. Once this is settled, the decision makers use data to discover
which criteria to use and how to weight them in order to best predict the target.
While they might exercise discretion in choosing the criteria to use, the weighting of
these criteria would be dictated entirely by the goal of maximizing the accuracy of
the resulting prediction of the chosen target. In other words, the decision-making
rule would, in large part, be learned from data, rather than set down according to
decision makers’ subjective intuitions, expectations, and normative commitments.

Table 2.1: Comparison of traditional decision making to
predictive optimization

Traditional approach
Predictive optimization
approach

Example: college
admissions

Holistic approach that takes
into account achievements,
character, special
circumstances, and other
factors

Train a model based on past
students’ data to predict
applicants’ GPA if admitted;
admit highest scoring
applicants

Goal and target No explicit target; goal is
implicit (and there are
usually multiple goals)

Define an explicit target;
assume it is a good proxy for
the goal

Focus of
deliberation

Debate is about how the
criteria should affect the
decision

Debate is largely about the
choice of target

Effectiveness May fail to produce rules
that meet their putative
objectives

Predictive accuracy can be
quantified

Range of
normative
considerations

Easier to incorporate
multiple normative
principles such as need

Harder to incorporate
multiple normative
principles

Justification Can be difficult to divine
rule makers’ reasons for
choosing a certain decision
making scheme

Reasons for the chosen
decision making scheme are
made explicit in choice of
target
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Each approach has pluses and minuses from a normative perspective. The
traditional approach makes it possible to express multiple goals and normative
values through the choice of criteria and the weight assigned to them.

In the machine learning approach, multiple goals and normative considerations
need to be packed into the choice of target. In college admissions, those goals and
considerations might include — in addition to scholastic potential — athletic and
leadership potential, the extent to which the applicant would contribute to campus
life, whether the applicant brings unusual life experiences, their degree of need,
and many others. The most common approach is to define a composite target
variable that linearly combines multiple components, but this quickly becomes
unwieldy and is rarely subject to robust debate. There is also some room to exercise
normative judgment about the choice to include or exclude certain decision criteria,
but is a far cry from deliberative policy-making.

On the other hand, if we believe that a target does, in fact, capture the full
range of goals that decision makers have in mind, machine learning models
might be able to serve these goals more effectively. For example, in a paper that
compares the two approaches to policy making, Rebecca Johnson and Simone
Zhang show that the traditional approach (i.e., manually crafting rules via a
process of deliberation and debate) often fails to produce rules that meet their
putative objectives.72 In examining rules for allocating housing assistance, they
find that housing authorities prioritize veterans above particularly rent-burdened
households, despite the fact that supporting such households would seem to be
more in line with the policy’s most basic goal. Johnson and Zhang assert that
while this prioritization might be the actual intent of the policymakers setting the
rules, the reasons for this prioritization are rarely made explicit in the process
of deliberation and are especially difficult to discern after the fact. Were these
rules developed instead using machine learning, policymakers would need to
agree on an explicit target of prediction, which would leave much less room for
confusion about policymakers’ intent. And it would ensure that the resulting rules
are only designed to predict that target.72 As Rediet Abebe, Solon Barocas, Jon
Kleinberg, and colleagues have argued, “[t]he nature of computing is such that it
requires explicit choices about inputs, objectives, constraints, and assumptions in a
system”73 — and this may be a good thing if it forces certain policy considerations
and normative judgements into the open.

The machine learning approach nevertheless runs the serious risk of focusing
narrowly on the accuracy of predictions. In other words, “good” decisions are
those that accurately predict the target. But decision making might be “good” for
other reasons: focusing on the right qualities or outcomes (in other words, the
target is a good proxy for the goal), considering only relevant factors, considering
the full set of relevant factors, incorporating other normative principles (e.g., need,
desert, etc.), or allowing people to understand and potentially contest the policy.
Even a decision making process that is not terribly accurate might be seen as good
if it has some of these other properties.74 In the next few sections, we’ll explore
how each of these concerns might apply to machine learning.
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Mismatch between target and goal

Identifying a target of prediction that is a good match for the goals of the decision
maker is rarely straightforward. Decision makers often don’t have a pre-existing,
clear, and discrete goal in mind.75 When they do, the goal can be far more complex
and multifaceted than one discrete and easily measurable outcome.76 In fact,
decision makers can have multiple conflicting goals, perhaps involving some trade-
offs between them. For example, the decision-making schemes adopted by college
admission officers often encode a range of different goals. They do not simply
rank applicants by their predicted grade point average and then admit the top
candidates to fill the physical capacity of the school. Aside from the obvious fact
that this would favor candidates who take “easy” classes, admissions officers aim
to recruit a student body with diverse interests and a capacity to contribute to the
broader community.

Besides, there might be serious practical challenges in measuring the true
outcome of interest, leaving decision makers to find alternatives that might serve
as a reasonable proxy for it. In most cases, decision makers settle on a target of
convenience — that is, on a target for which there is easily accessible data.56, 77 For
example, arrest data (i.e., whether someone has been arrested) is often adopted
as a proxy for crime data (i.e., whether someone has committed a crime), even
though many crimes are never observed and thus never result in arrest and even
though the police might be quite selective in choosing to arrest someone for an
observed crime.78 Without condoning the decision to adopt this target, we might
still recognize the practical challenges that would encourage the police to rely on
arrests. It is simply impossible to observe all crime and so decision makers might
feel justified in settling on arrests as a substitute.

Even if decision makers had some way of obtaining information on crime,
it is still not obvious how well this chosen target would match the underlying
goals of the police. Accurately predicting the occurrence of future crimes is not
the same thing as helping to reduce crime; in fact, accurate predictions of crime
might simply cause the police to observe more crimes and generate more arrests
rather than preventing those crimes from happening in the first place.79 If the
police’s actual goal is to reduce crime and not simply to ensure that all crimes
result in arrests, then even using crime as the target of prediction might not help
the police to realize these goals. The police might be better off estimating the
deterrent effect of police intervention, but this is a far more complicated task than
making predictions on the basis of observational data; answering these questions
requires experimentation. (Of course, even this formulation of the problem should
be subject to further critical analysis because it fails to consider the many other
kinds of interventions that might help to reduce crime beyond improving the
deterrent effect of police presence.) Yet even when there are good reasons to favor
a more nuanced approach along these lines, decision makers may favor imperfect
simplifications of the problem because they are less costly or more tractable.61, 56

Finally, decision makers and decision subjects might have very different ideas
about what would constitute the right target of prediction. Much of the discussion
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in this chapter has so far been premised on the idea that decision makers’ goals
are widely perceived as desirable in the first place, and thus defensible. But there
are many times when the normative issue is not with the way decisions are being
made, but with the goal of the decision-making process itself.77 In some cases,
we may disagree with the goals of any given decision maker because we don’t
think that they are what is in the best interest of the decision makers themselves.
More often, we might disagree with these goals because they are at odds with
the interests of other people who will be negatively impacted by decision makers’
pursuit of these goals. As Oscar Gandy has argued, “certain kind[s] of bias are
inherent in the selection of the goals or objective functions that automated systems
will [be] designed to support”.80

To appreciate how this is different from a target-goal mismatch, consider a
well-known study by Ziad Obermeyer, Brian Powers, Christine Vogeli, et al. on bias
in an algorithm employed by a healthcare system to predict which patients would
benefit most from a “high-risk care management” program.81 They found that
algorithm exhibited racial bias — specifically, that it underestimated the degree to
which black patients’ health would benefit from enrollment in the program. That’s
because the developers adopted healthcare costs as the target of prediction, on
the apparent belief that it would serve as a reasonable proxy for healthcare needs.
The common recounting of this story suggests that decision makers simply failed
to recognize the fact that there are racial disparities in both care-seeking and the
provision of healthcare that cause black patients of equivalently poor health to
be less expensive than non-black patients. On this account, fixing the problem
would only require adopting a target that better reflected the healthcare system’s
goals: maximizing the overall health benefits of the program. Yet it is entirely
possible that the original target of prediction reflected the healthcare system’s true
goals, which might have been to simply reduce costs without any regard for whose
health would benefit most from these interventions. If that were the case, then the
choice of target was not simply a poor match for decision makers’ goals; the goals
themselves were problematic. We must be careful not to confuse cases where we
object to the goals for cases where we object to the particular choice of target.

Failing to consider relevant information

Bureaucracies are often criticized for not being sufficiently individualized or partic-
ularized in their assessments, lumping people into needlessly coarse groups. Had
decision makers only considered some additional detail, they would have realized
that the person in question is actually unlike the rest of the people with whom
they have been grouped.

Supervised machine learning is a form of inductive reasoning. It aims to draw
general rules from a set of specific examples, identifying the features and feature
values that reliably co-occur with an outcome of interest. As it turns out, the
limitation of being insufficiently individualized is an unavoidable part of inductive
reasoning.
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Imagine a car insurance company that is trying to predict the likelihood that a
person applying for an insurance policy will get into a costly accident. The insurer
will try to answer this question by looking at the frequency of past accidents that
involved other people similar to the applicant. This is inductive reasoning: the
applicant is likely to exhibit similar behavior or experience similar outcomes as
previous policyholders because the applicant possesses many other qualities in
common with these policyholders. Perhaps the person is applying for insurance to
cover their bright red sports car — a type of car that is involved in accidents far
more frequently than other types of cars. Noting this historical pattern, the insurer
might therefore conclude that there is a heightened chance that the applicant will
need to make a claim against their policy — and only offer to insure the applicant
at an elevated price. Having received the offer, the applicant, who is, in fact, a
highly skilled driver with an excellent command of the car, might balk at the price,
objecting to the idea that they present a risk anything like the other policyholders
with the same car.

What has happened here? The insurer has made its prediction on the basis of
rather coarse details (in this case, on the basis of only the model and color of the
car), treating the rate at which accidents happen among previous policyholders
with such a car as a reliable indicator of the probability of the applicant having
an accident of their own. Frederick Schauer refers to this as the problem of
“statistically sound but nonuniversal generalizations”: when an individual fulfills
all the criteria for inclusion in a particular group, but fails to possess the quality
that these criteria are expected to predict.82

Situations of this sort can give rise to claims of stereotyping or profiling and to
demands that decision makers assess people as individuals, not merely as members
of a group. Yet, as Schauer has explained, it can be difficult to specify what it
means to treat someone as an individual or to make individualized decisions. It is
unclear, for example, how an insurer could make predictions about an individual’s
likelihood of getting into a car accident without comparing the applicant to other
people that resemble them. At issue in these cases is not the failure to treat someone
as an individual, but the failure to take additional relevant criteria into account
that would distinguish a person from the other people with whom they would
otherwise be lumped in with.82 If the insurer had access to additional details (in
particular, details about the applicant’s and past policyholders’ driving skills), the
insurer might have made a more discerning judgment about the applicant. This is
exactly what is going on when insurers agree to offer lower prices to applicants who
voluntarily install black boxes in their cars and who demonstrate themselves to be
careful drivers. It is easy to misinterpret this trend as a move toward individualized
assessment, as if insurers are judging each individual person on their unique merits
as a driver. The correct interpretation requires that we recognize that insurers are
only able to make use of the data from a specific driver’s black box by comparing
it to the data from the black boxes of other drivers whose driving records are being
used to make a prediction about the driver in question. Even if we accept that
decisions can never be fully individualized, we might still expect that decision
makers take into account the full range of relevant information at their potential
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disposal. To carry forward the example above, we might say that the car insurance
company had an obligation to consider the applicants’ driving skills, not just the
model and color of their car, even if doing so still meant that they were being assess
according to how often other people with similar driving skills and similar cars
have gotten into accidents in the past.

But how far should this expectation extend? What obligations do decision
makers have to seek out every last bit of conceivable information that might enable
more accurate predictions? Well, at some point, additional information ceases to
be helpful because there isn’t enough training data. For example, people who live
near a specific intersection may be more likely to get into accidents because the
intersection is poorly designed and thus dangerous. But the insurer can only learn
this if it has enough data from enough people who live near this intersection.

There is also a very practical reason why we might not hold decision makers
to a standard in which they are required to consider all information that might
be conceivably relevant. Collecting and considering all of this information can
be expensive, intrusive, and impractical. In fact, the cost of doing so could easily
outweigh the perceived benefits that come from more granular decision making —
not just to the decision maker but to the subjects of the decisions as well. While
black boxes can help to achieve far more granularity in insurance pricing, they
are also controversial because they are quite intrusive and pose a threat to drivers’
privacy. For reasons along these lines, Schauer and others have suggested that
decision makers are justified in making decisions on the basis of a limited set of
information, even when additional relevant information might exist, if the cost of
obtaining that information swamps out its benefits.82, 83

There are three things to note about these arguments. First, these are not
arguments about automated decision-making specifically; they are general state-
ments about any form of decision making, whether automated or not. Yet, as
we discussed earlier in the chapter, automated decision making often limits the
opportunity to introduce additional relevant information into the decision-making
process. The cost-savings that might be achieved by automating certain decisions
(often by way of replacing human workers with software) comes at the cost of
depriving people the chance to highlight relevant information that has no place in
the automated process. Given that people might be both very willing and perfectly
able to volunteer this information (i.e., able to do so at little cost), automated
decision-making that simply denies people the opportunity to do so might fail the
cost-benefit analysis. Second, the cost-benefit analysis that undergirds Schauer and
others’ arguments does not take into account any distributional considerations, like
which groups might be enjoying more of the benefits or experiencing more of the
costs. In Chapter 4, we’ll return to this question, asking whether decision makers
are justified in subjecting certain groups to less granular and thus less accurate
decisions simply because there is less information about them. Finally, these argu-
ments don’t grapple with the fact that decision makers and decision subjects might
arrive at quite different conclusions when performing a cost-benefit analysis if they
are performing this analysis from their own perspectives. A decision-maker might
find that the costs of collecting more information does not generate a sufficiently
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large corresponding benefit for them as the decision maker, despite the fact that certain
decision subjects would surely benefit from such an investment. It is not obvious
why the cost-benefit analysis of decision makers alone should be allowed to deter-
mine the level of granularity that is acceptable. One possible explanation might
be that increasing the costs of making decisions (by, for example, seeking out and
taking more information into account) will encourage decision makers to simply
pass these costs onto decision subjects. For instance, if developing a much more
detailed assessment of applicants for car insurance increases the operating costs of
the insurer, the insurer is likely to charge applicants a higher price to offset these
additional costs. From this perspective, the costs to the decision maker are really
just costs to decision subjects. Of course, this perspective doesn’t contemplate the
possibility of the insurer simply assuming these costs and accepting less profit.

The limits of induction

Beyond cost considerations, there are other limits to inductive reasoning. Suppose
the coach of a track team assesses potential members of the team according
to the color of their sneakers rather than the speed with which they can run.
Imagine that just by coincidence, slower runners in the pool happen to prefer red
sneakers and faster runners happen to prefer blue sneakers — but that no such
relationship obtains in other pools of runners. Thus, any lessons the coach might
draw from these particular runners about the relationship between sneaker colors
and speed would be unreliable when applied to other runners. This is the problem
of overfitting.84 It is a form of arbitrary decision making because the predictive
validity that serves as its justification is an illusion.

Overfitting is a well-understood problem in machine learning and there are
many ways to counteract it. Since the spurious relationship occurs due to co-
incidence, the bigger the sample, the less likely it is to occur. Further, one can
penalize models that are overly complicated to make it less likely that they pick
up on chance patterns in the data. And most importantly, it is standard practice
to separate the examples that are used to train and test machine learning models.
This allows a realistic assessment of how well the relationships observed in the
training data carry over to unseen examples. For these reasons, unless dealing with
small sample sizes, overfitting is generally not a serious problem in practice.

But variants of the overfitting problem can be much more severe and thorny. It
is common practice in machine learning to take one existing dataset — in which
all the data has been gathered in a similar way — and simply split this dataset
into training and test sets. The small differences between these sets will help to
avoid overfitting and may give some sense for performance on unseen data. But
these splits are still much more similar to each other than the future population to
which the model might be applied.85, 86 This is the problem of “distribution shifts,”
of which there are many different kinds. They are common in practice and they
present a foundational problem for the machine learning paradigm.

Returning to our earlier example, imagine that runners are only able to buy
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sneakers from one supplier and that the supplier only sells one type of sneaker,
but varies the color of the sneaker by size (all sizes below 8 are red, while all
sizes 8 and above are blue). Further, assume that runners with larger feet are
faster than those with smaller feet and that there is a large step change in runners’
speed once their foot size exceeds 7. Under these circumstances, selecting runners
according to the color of their sneakers will reliably result in a team composed of
faster runners, but it will do so for reasons that we still might find foolish or even
objectionable. Why? The relationship between the color of a runner’s sneakers and
running speed is obviously spurious in the sense that we know that the color of
a runner’s sneakers has no causal effect on speed. But is this relationship truly
spurious? It is not just an artifact of the particular set of examples from which a
general rule has been induced; it’s a stable relationship in the real world. So long
as there remains only one supplier and the supplier only offers different colors
in these specific sizes, sneaker color will reliably distinguish faster runners from
slower runners. So what’s the problem with making decisions on this basis? Well,
we might not always have a way to determine whether we are operating under
the conditions described. Generalizing from specific examples always admits the
possibility of drawing lessons that do not apply to the situation that decision
makers will confront in the future.

One response to these concerns is to assert that there is a normative obligation
that decision criteria bear a causal relationship to the outcome that they are being
used to predict. The problem with using sneaker color as a criterion is obvious
to us because we can recognize the complete absence of any plausible causal
influence on running speed. When machine learning is used, the resulting models,
unconcerned with causality, may seize upon unstable correlations.87 This gives rise
to demands that no one should be subject to decision-making schemes that are
based on findings that lack scientific merit — that is, on findings that are spurious
and thus invalid. They likely account for concerns of scholars like Frank Pasquale,
who talks about cases where machine learning is “facially invalid”,88 and Pauline
Kim and Erika Hanson, who have argued that “because data mining uncovers
statistical relationships that may not be causal, relying on those correlations to make
predictions about future cases may result in arbitrary treatment of individuals”.89

Asserting that decision-making schemes should only be based on criteria that have
a causal relationship to the outcome of interest are likely perceived as a way to
avoid these situations — that is, as a way to ensure that the basis for decision
making is well reasoned, not arbitrary.

A right to accurate predictions?

In the previous two sections, we discussed several reasons why predictions using
inductive reasoning may be inaccurate, including failing to consider relevant
information and distribution shift. But even if we set aside those reasons — assume
that the decision maker considers all available information, there is no distribution
shift, etc. — there might be insurmountable limits to the accuracy of predicting
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future outcomes. These limits might persist whether or not inductive reasoning is
employed.90 For example, at least some cases of recidivism are due to spur-of-the-
moment crimes committed when opportunities fortuitously presented themselves,
and these might not be predictable in advance. (We’ll review some of the empirical
evidence of limits to prediction in later chapters.)

What are the implications of these limits to prediction? From the decision
maker’s perspective, even a small increase in predictive accuracy compared to
a baseline (human judgment or rule-based policy) can be valuable. Consider a
child protection agency employing a predictive screening tool to determine which
children are at risk of child abuse. Increased accuracy may mean fewer children
placed in foster care. It might also result in substantial cost savings, with fewer
caseworkers required to make visits to homes.

A typical model deployed in practice may have an accuracy (more precisely,
AUC) of between 0.7 and .8.91 That’s better than a coin toss but still results in a
substantial number of false positives and false negatives. A claim that the system
makes the most accurate decision possible at the time of screening is cold comfort
to families where children are separated from their parents due to the model’s
prediction of future abuse, or cases of abuse that the model predicted to be low risk.
If the model’s outputs were random, we would clearly consider it arbitrary and
illegitimate (and even cruel). But what is the accuracy threshold for legitimacy? In
other words, how high must accuracy be in order to be able to justify the use of a
predictive system at all?92

Low accuracy becomes even more problematic when we consider that it is
measured with respect to a prediction target that typically requires sacrificing some
of the multifaceted goals that decision makers might have. For example, a child
welfare risk prediction model might not be able to reason about the differential
effects that an intervention such as foster care might have on different children and
families. How much of an increase in predictive accuracy is needed to justify the
mismatch between the actual goals of the system and those realized by the model?

Obviously, these questions don’t have easy answers, but they represent impor-
tant and underappreciated threats to the legitimacy of predictive decision making.

Agency, recourse, and culpability

Let’s now consider a very different concern: could criteria that exhibit statistical
relevance and enable accurate predictions still be normatively inappropriate as the
basis for decision making?

Perhaps the criterion in question is an immutable characteristic. Perhaps it
is a mutable characteristic, but not one that the specific person in question has
any capacity to change. Or perhaps the characteristic has been affected by the
actions of others, and is not the result of the person’s own actions. Each of these
reasons, in slightly different ways, all concern the degree of control that a person is
understood to have over the characteristic in question — and each provides some
normative justification for either ignoring or discounting the characteristic even
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when it might be demonstrably predictive of the outcome of interest. Let’s dig into
each of these concerns further.

Decisions based on immutable characteristics can be cause for concern because
they threaten people’s agency. By definition, there is nothing anyone can do to
change immutable characteristics (e.g., one’s country of birth). By extension, there
is nothing anyone can do to change decisions made on the basis of immutable
characteristics. Under these circumstances, people are condemned to their fates
and are no longer an agent of their own lives. There is something disquieting about
the idea of depriving people of the capacity to make changes that would result
in a different outcome from the decision-making process, especially when these
decisions might significantly affect a person’s life chances and life course. This
might be viewed as especially problematic when there seem to be alternative ways
for a decision maker to render effective judgment about a person without relying on
immutable characteristics. In this view, if it is possible to develop decision-making
schemes that are equally accurate, but still leave room for decision subjects to adapt
their behavior so as to improve their chances of a favorable decision, then decision
makers have an moral obligation to adopt such a scheme out of respect for people’s
agency.

Recourse is a related but more general idea about the degree to which people
have the capacity to make changes that result in different decisions.93 While there
is nothing anyone might do to change an immutable characteristic, people might
be more or less capable of changing those characteristics that are, in principle,
mutable.94, 95 Some people might need to expend far more resources than others to
obtain the outcome that they want from the decision-making process. Choosing
certain criteria to serve as the basis for decision making is also a choice about the
kinds of actions that will be available for people to undertake in seeking a different
decision. And people in different circumstances will have different abilities to
successfully do so. In some cases, people may never have sufficient resources to
achieve this — bringing us back to the same situation discussed in the previous
paragraph. For example, one applicant for credit might be well positioned to move
to a new neighborhood so as to make herself a more attractive candidate for a new
loan, assuming that the decision making scheme uses location as an important
criterion. But another applicant might not be able to do so, for financial, cultural,
or many other reasons.

Research on recourse in machine learning has largely focused on ensuring that
people receive explanations of ways to achieve a different decision from a model
that people can actually execute in reality.96 Given that there are many possible
ways to explain the decisions of a machine learning model, the goal of this work is
to ensure that the proffered explanations direct people to take viable actions rather
than suggesting that the only way to get the desired outcome is to do something
beyond their capacity. Even when developing a decision-making scheme that only
relies on mutable characteristics, decision makers can do more to preserve recourse
by adapting their explanation of a model’s decisions to focus on those actions that
are easiest for people to change. On this account, the better able people are to
make changes that give them the desired outcome, the better the decision-making
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scheme and the better the explanation.
Finally, as mentioned earlier in this section, we might view certain decision-

making schemes as unfair if they hold people accountable for characteristics
outside their control. Basic ideas about moral culpability almost always rest on
some understanding of the actions that brought about the outcomes of concern.
For example, we might be upset with a person who has bumped into us and
caused us to drop and break some precious item. Upon discovering that they have
been pushed by somebody else, we are likely to hold them blameless and redirect
our disapprobation to the person who pushed them. This same reasoning often
carries over to the way that we think about the fairness of relying on certain criteria
when making decisions that allocate desirable resources and opportunities. Unless
we know why certain outcomes come to pass, we cannot judge whether decision
makers are normatively justified in relying on criteria that accurately predict if that
outcome will come to pass. We need to understand the cause of the outcome of
interest so that we might reflect on whether the subject of the decision bears moral
responsibility for the outcome, given its cause.

For example, as Barbara Kiviat has explored, laws in many U.S. states limit the
degree to which car insurance providers can take into account “extraordinary life
circumstances” when making underwriting or pricing decisions, including such
events as the death of a spouse, child, or parent.97 These laws forbid insurers from
considering a range of factors over which people cannot exercise any control —
like a death in the family — but which may nevertheless contribute to someone
experiencing financial hardship and thus to increasing the likelihood of making
a claim against their car insurance policy in the event of even a minor accident.
These prohibitions reflect an underlying belief that people should not be subject
to adverse decisions if they were not responsible for whatever it is that makes
them appear less deserving of more favorable treatment. Or to put it another way:
people should only be judged on the basis of factors for which they are morally
culpable. Fully implementing this principle is impractical, since most attributes
that the decision maker might use, say income, are partly but not fully the result of
the individual’s choices. However, attributes like a death in the family seem to fall
fairly clearly on one side of the line.

Of course, there is a flip side to all of this. If people can easily change the
features that are used to make decisions about them, they might “game” the
decision-making process. By gaming we mean changing the value of features
in order to change the decision without changing the expected outcome that the
features are meant to predict.98 ‘Teaching to the test’ is a familiar scenario that
is an example of gaming. Here, the test score is a feature that predicts future
performance (say, at a job). Assume that the test, in fact, has predictive value,
because people who do well at the test tend to have mastered some underlying
body of knowledge, and such mastery improves their job performance. Teaching
to the test refers to methods of preparation that increase the test score without
correspondingly increasing the underlying ability that the score is meant to reflect.
For example, teachers might help students prepare for the test by exploiting the
fact that the test assesses very specific knowledge or competencies — not the full
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range of knowledge or competencies that the test purports to measure — and focus
preparation on only those parts that will be assessed.99 Jane Bambauer and Tal
Zarsky give many examples of gaming decision making systems.100

Gaming is a common problem because most models do not discover the causal
mechanism that accounts for the outcome. Thus, preventing gaming requires causal
modeling.98 Furthermore, a gameable scheme becomes less effective over time
and may undermine the goals of the decision maker and the proper allocation of
the resource. In fact, gaming can be a problem even when decision subjects are
not acting adversarially. Job seekers may expend considerable effort and money
to obtain meaningless credentials that they are told matter in their industry, only
to find that while this helps them land a job, it does not make them any better
prepared to actually perform it.101 Under such circumstances, strategic behavior
may represent wasteful investment of effort on the part of well-intentioned actors.

Concluding thoughts

In this chapter, we teased apart three forms of automation. We discussed how each
of these responds to concerns about arbitrary decision making in some ways, while
at the same time opening up new concerns about legitimacy. We then delved deep
into the third type of automation, predictive optimization, which is what we’ll be
concerned with in most of this book.

To be clear, we make no blanket claims about the legitimacy of automated deci-
sion making or predictive optimization. In applications that aren’t consequential to
people’s life chances, questions of legitimacy are less salient. For example, in credit
card fraud detection, statistical models are used to find patterns in transaction
data, such as a sudden change in location, that might indicate fraud resulting from
stolen credit card information. The stakes to individuals tend to be quite low. For
example, in the United States, individual liability is capped at $50 provided certain
conditions are met. Thus, while errors are costly, the cost is primarily borne by the
decision maker (in this example, the bank). So banks tend to deploy such models
based on cost considerations without worrying about (for instance) providing a
way for customers to contest the model.

In consequential applications, however, to establish legitimacy, decision makers
must be able to affirmatively justify their scheme along the dimensions we’ve laid
out: explain how the target relates to goals that all stakeholders can agree on;
validate the accuracy of the deployed system; allow methods for recourse, and so
forth. In many cases, it is possible to put procedural protections around automated
systems to achieve this justification, yet decision makers are loath to do so because
it undercuts the cost savings that automation is meant to achieve.
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3
Classification

The goal of classification is to leverage patterns in natural and social processes to
conjecture about uncertain outcomes. An outcome may be uncertain because it
lies in the future. This is the case when we try to predict whether a loan applicant
will pay back a loan by looking at various characteristics such as credit history and
income. Classification also applies to situations where the outcome has already
occurred, but we are unsure about it. For example, we might try to classify whether
financial fraud has occurred by looking at financial transactions.

What makes classification possible is the existence of patterns that connect
the outcome of interest in a population to pieces of information that we can
observe. Classification is specific to a population and the patterns prevalent in
the population. Risky loan applicants might have a track record of high credit
utilization. Financial fraud often coincides with irregularities in the distribution of
digits in financial statements. These patterns might exist in some contexts but not
others. As a result, the degree to which classification works varies.

We formalize classification in two steps. The first is to represent a population
as a probability distribution. While often taken for granted in quantitative work
today, the act of representing a dynamic population of individuals as a probability
distribution is a significant shift in perspective. The second step is to apply statistics,
specifically statistical decision theory, to the probability distribution that represents
the population. Statistical decision theory formalizes the classification objective,
allowing us to talk about the quality of different classifiers.

The statistical decision-theoretic treatment of classification forms the founda-
tion of supervised machine learning. Supervised learning makes classification
algorithmic in how it provides heuristics to turn samples from a population into
good classification rules.

Modeling populations as probability distributions

One of the earliest applications of probability to the study of human populations
is Halley’s life table from 1693. Halley tabulated births and deaths in a small
town in order to estimate life expectancy in the population. Estimates of life
expectancy, then as novel as probability theory itself, found use in accurately
pricing investments that paid an amount of money annually for the remainder of a
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Figure 3.1: Halley’s life table (1693)

person’s life.
For centuries that followed, the use of probability to model human populations,

however, remained contentious both scientifically and politically.102, 103, 104 Among
the first to apply statistics to the social sciences was the 19th astronomer and sociol-
ogist Adolphe Quetelet. In a scientific program he called “social physics”, Quetelet
sought to demonstrate the existence of statistical laws in human populations. He
introduced the concept of the “average man” characterized by the mean values of
measured variables, such as height, that followed a normal distribution. As much
a descriptive as a normative proposal, Quetelet regarded averages as an ideal to be
pursued. Among others, his work influenced Francis Galton in the development of
eugenics.

The success of statistics throughout the 20th century cemented in the use of
probability to model human populations. Few raise an eyebrow today if we talk
about a survey as sampling responses from a distribution. It seems obvious now
that we’d like to estimate parameters such as mean and standard deviation from
distributions of incomes, household sizes, or other such attributes. Statistics is so
deeply embedded in the social sciences that we rarely revisit the premise that we
can represent a human population as a probability distribution.

The differences between a human population and a distribution are stark.
Human populations change over time, sometimes rapidly, due to different actions,
mechanisms, and interactions among individuals. A distribution, in contrast, can
be thought of as a static array where rows correspond to individuals and columns
correspond to measured covariates of an individual. The mathematical abstraction
for such an array is a set of nonnegative numbers, called probabilities, that sum up
to 1 and give us for each row the relative weight of this setting of covariates in
the population. To sample from such a distribution corresponds to picking one
of the rows in the table at random in proportion to its weight. We can repeat this
process without change or deterioration. In this view, the distribution is immutable.
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Nothing we do can change the population.
Much of statistics deals with samples and the question how we can relate

quantities computed on a sample, such as the sample average, to corresponding
parameters of a distribution, such as the population mean. The focus in our
chapter is different. We’ll use statistics to talk about properties of populations as
distributions and by extension classification rules applied to a population. While
sampling introduces many additional issues, the questions we raise in this chapter
come out most clearly at the population level.

Formalizing classification

The goal of classification is to determine a plausible value for an unknown target Y
given observed covariates X. Typically, the covariates are represented as an an array
of continuous or discrete variables, while the target is discrete, often binary, value.
Formally, the covariates X and target Y are jointly distributed random variables.
This means that there is one probability distribution over pairs of values (x, y) that
the random variables (X, Y) might take on. This probability distribution models a
population of instances of the classification problem. In most of our examples, we
think of each instance as the covariates and target of one individual.

At the time of classification, the value of the target variable is not known to
us, but we observe the covariates X and make a guess Ŷ = f (X) based on what
we observed. The function f that maps our covariates into our guess Ŷ is called
a classifier, or predictor. The output of the classifier is called label or prediction.
Throughout this chapter we are primarily interested with the random variable Ŷ
and how it relates to other random variables. The function that defines this random
variables is secondary. For this reason, we stretch the terminology slightly and
refer to Ŷ itself as the classifier.

Implicit in this formal setup of classification is a major assumption. Whatever
we do on the basis of the covariates X cannot influence the outcome Y. After
all, our distribution assigns a fixed weight to each pair (x, y). In particular, our
prediction Ŷ cannot influence the outcome Y. This assumption is often violated
when predictions motivate actions that influence the outcome. For example, the
prediction that a student is at risk of dropout, might be followed with educational
interventions that make dropout less likely.

To be able to choose a classifier out of many possibilities, we need to formalize
what makes a classifier good. This question often does not have a fully satisfying
answer, but statistical decision theory provides criteria that can help highlight
different qualities of a classifier that can inform our choice.

Perhaps the most well known property of a classifier Ŷ is its classification
accuracy, or accuracy for short, defined as P{Y = Ŷ}, the probability of correctly
predicting the target variable. We define classification error as P{Y 6= Ŷ}. Accuracy
is easy to define, but misses some important aspects when evaluating a classifier.
A classifier that always predicts no traffic fatality in the next year might have high
accuracy on any given individual, simply because fatal accidents are unlikely.
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However, it’s a constant function that has no value in assessing the risk of a traffic
fatality.

Other decision-theoretic criteria highlight different aspects of a classifier. We
can define the most common ones by considering the conditional probability
P{event | condition} for various different settings.

Table 3.1: Common classification criteria

Event Condition Resulting notion (P{event | condition})

Ŷ = 1 Y = 1 True positive rate, recall
Ŷ = 0 Y = 1 False negative rate
Ŷ = 1 Y = 0 False positive rate
Ŷ = 0 Y = 0 True negative rate

The true positive rate corresponds to the frequency with which the classifier
correctly assigns a positive label when the outcome is positive. We call this a
true positive. The other terms false positive, false negative, and true negative derive
analogously from the respective definitions. It is not important to memorize all
these terms. They do, however, come up regularly in the classification settings.

Another family of classification criteria arises from swapping event and condi-
tion. We’ll only highlight two of the four possible notions.

Table 3.2: Additional classification criteria

Event Condition Resulting notion (P{event | condition})

Y = 1 Ŷ = 1 Positive predictive value, precision
Y = 0 Ŷ = 0 Negative predictive value

Optimal classification

Suppose we assign a quantified cost (or reward) to each of the four possible
classification outcomes, true positive, false positive, true negative, false negative.
The problem of optimal classification is to find a classifier that minimizes cost
in expectation over a population. We can write the cost as a real number `(ŷ, y),
called loss, that we experience when we classify a target value y with a label ŷ. An
optimal classifier is any classifier that minimizes the expected loss:

E[`(Ŷ, Y)]

This objective is called classification risk and risk minimization refers to the opti-
mization problem of finding a classifier that minimizes risk.

As an example, choose the losses `(0, 1) = `(1, 0) = 1 and `(1, 1) = `(0, 0) = 0.
For this choice of loss function, the optimal classifier is the one that minimizes
classification error. The resulting optimal classifier has an intuitive solution.
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Fact 1. The optimal predictor minimizing classification error satisfies

Ŷ = f (X) , where f (x) =

{
1 if P{Y = 1 | X = x} > 1/2
0 otherwise.

The optimal classifier checks if the propensity of positive outcomes given the
observed covariates X is greater than 1/2. If so, it makes the guess that the outcome
is 1. Otherwise, it guesses that the outcome is 0. The optimal predictor above is
specific to classification error. If our loss function were different, the threshold 1/2
in the definition above would need to change. This makes intuitive sense. If our
cost for false positives was much higher than our cost for false negatives, we’d
better err on the side of not declaring a positive.

The optimal predictor is a theoretical construction that we may not be able to
build from data. For example, when the vector of covariates X is high-dimensional,
a finite sample is likely going to miss out on some settings X = x that the covariates
might take on. In this case, it’s not clear how to get at the probability P{Y = 1 |
X = x}. There is a vast technical repertoire in statistics and machine learning for
finding good predictors from finite samples. Throughout this chapter we focus on
problems that persist even if we had access to the optimal predictor for a given
population.

Risk scores

The optimal classifier we just saw has an important property. We were able to write
it as a threshold applied to the function

r(x) = P{Y = 1 | X = x} = E[Y | X = x] .

This function is an example of a risk score. Statistical decision theory tells us that
optimal classifiers can generally be written as a threshold applied to this risk score.
The risk score we see here is a particularly important and natural one. We can
think of it as taking the available evidence X = x and calculating the expected
outcome given the observed information. This is called the posterior probability
of the outcome Y given X. In an intuitive sense, the conditional expectation is a
statistical lookup table that gives us for each setting of features the frequency of
positive outcomes given these features. The risk score is sometimes called Bayes
optimal. It minimizes the squared loss

E(Y− r(X))2

among all possible real-valued risk scores r(X). Minimization problems where we
try to approximate the target variable Y with a real-valued risk score are called
regression problems. In this context, risk scores are often called regressors. Although
our loss function was specific, there is a general lesson. Classification is often
attacked by first solving a regression problem to summarize the data in a single
real-valued risk score. We then turn the risk score into a classifier by thresholding.
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Figure 3.2: Plot of the body mass index.

Risk scores need not be optimal or learned from data. For an illustrative
example consider the well-known body mass index, due to Quetelet by the way,
which summarizes weight and height of a person into a single real number. In our
formal notation, the features are X = (H, W) where H denotes height in meters
and W denotes weight in kilograms. The body mass index corresponds to the score
function R = W/H2.

We could interpret the body mass index as measuring risk of, say, diabetes.
Thresholding it at the value 30, we might decide that individuals with a body
mass index above this value are at risk of developing diabetes while others are
not. It does not take a medical degree to worry that the resulting classifier may
not be very accurate. The body mass index has a number of known issues leading
to errors when used for classification. We won’t go into detail, but it’s worth
noting that these classification errors can systematically align with certain groups
in the population. For instance, the body mass index tends to be inflated as a risk
measure for taller people due to scaling issues.

A more refined approach to finding a risk score for diabetes would be to solve
a regression problem involving the available covariates and the outcome variable.
Solved optimally, the resulting risk score would tell us for every setting of weight
(say, rounded to the nearest kg unit) and every physical height (rounded to the
nearest cm unit), the incidence rate of diabetes among individuals with these
values of weight and height. The target variable in this case is a binary indicator of
diabetes. So, r((176, 68)) would be the incidence rate of diabetes among individuals
who are 1.76m tall and weigh 68kg. The conditional expectation is likely more
useful as a risk measure of diabetes than the body mass index we saw earlier. After
all, the conditional expectation directly reflects the incidence rate of diabetes given
the observed characteristics, while the body mass index didn’t solve this specific
regression problem.
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Figure 3.3: Example of an ROC curve

Varying thresholds and ROC curves

In the optimal predictor for classification error we chose a threshold of 1/2. This
exact number was a consequence of the equal cost for false positives and false
negatives. If a false positive was significantly more costly, we might wish to choose
a higher threshold for declaring a positive. Each choice of a threshold results in a
specific trade-off between true positive rate and false positive rate. By varying the
threshold from 0 to 1, we can trace out a curve in a two-dimensional space where
the axes correspond to true positive rate and false positive rate. This curve is called
an ROC curve. ROC stands for receiver operator characteristic, a name pointing at
the roots of the concept in signal processing.

In statistical decision theory, the ROC curve is a property of a distribution (X, Y).
It gives us for each setting of false positive rate, the optimal true positive rate that
can be achieved for the given false positive rate on the distribution (X, Y). This
leads to several nice theoretical properties of the ROC curve. In the machine learn-
ing context, ROC curves are computed more liberally for any given risk score, even
if it isn’t optimal. The ROC curve is often used to eyeball how predictive our score
is of the target variable. A common measure of predictiveness is the area under
the curve (AUC), which equals the probability that a random positive instance gets
a score higher than a random negative instance. An area of 1/2 corresponds to
random guessing, and an area of 1 corresponds to perfect classification.

Supervised learning

Supervised learning is what makes classification algorithmic. It’s about how to
construct good classifiers from samples drawn from a population. The details of
supervised learning won’t matter for this chapter, but it is still worthwhile to have
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a working understanding of the basic idea.
Suppose we have labeled data, also called training examples, of the

form (x1, y1), ..., (xn, yn), where each example is a pair (xi, yi) of an instance xi
and a label yi. We typically assume that these examples were drawn independently
and repeatedly from the same distribution (X, Y). A supervised learning algo-
rithm takes in training examples and returns a classifier, typically a threshold of a
score: f (x) = 1{r(x) > t}. A simple example of a learning algorithm is the familiar
least squares method that attempts to minimize the objective function

n

∑
i=1

(r(xi)− yi)
2 .

We saw earlier that at the population level, the optimal score is the conditional
expectation r(x) = E [Y | X = x] . The problem is that we don’t necessarily have
enough data to estimate each of the conditional probabilities required to construct
this score. After all, the number of possible values that x can assume is exponential
in the number of covariates.

The whole trick in supervised learning is to approximate this optimal solution
with algorithmically feasible solutions. In doing so, supervised learning must
negotiate a balance along three axes:

• Representation: Choose a family of functions that the score r comes from.
A common choice are linear functions r(x) = 〈w, x〉 that take the inner
product of the covariates x with some vector of coefficients w. More complex
representations involve non-linear functions, such as artificial neural networks.
This function family is often called the model class and the coefficients w are
called model parameters.

• Optimization: Solve the resulting optimization problem by finding model
parameters that minimize the loss function on the training examples.

• Generalization: Ensure that small loss on the training examples implies small
loss on the population that we drew the training examples from.

The three goals of supervised learning are entangled. A powerful representation
might make it easier to express complicated patterns, but it might also burden
optimization and generalization. Likewise, there are tricks to make optimization
feasible at the expense of representation or generalization.

For the remainder of this chapter, we can think of supervised learning as a black
box that provides us with classifiers when given labeled training data. What matters
are which properties these classifiers have at the population level. At the population
level, we interpret a classifier as a random variable by considering Ŷ = f (X). We
ignore how Ŷ was learned from a finite sample, what the functional form of the
classifier is, and how we estimate various statistical quantities from finite samples.
While finite sample considerations are fundamental to machine learning, they are
not central to the conceptual and technical questions around fairness that we will
discuss in this chapter.
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Groups in the population

Chapter 2 introduced some of the reasons why individuals might want to object to
the use of statistical classification rules in consequential decisions. We now turn
to one specific concern, namely, discrimination on the basis of membership in specific
groups of the population. Discrimination is not a general concept. It is concerned
with socially salient categories that have served as the basis for unjustified and
systematically adverse treatment in the past. United States law recognizes certain
protected categories including race, sex (which extends to sexual orientation), religion,
disability status, and place of birth.

In many classification tasks, the features X implicitly or explicitly encode
and individual’s status in a protected category. We will set aside the letter A
to designate a discrete random variable that captures one or multiple sensitive
characteristics. Different settings of the random variable A correspond to different
mutually disjoint groups of the population. The random variable A is often called
a sensitive attribute in the technical literature.

Note that formally we can always represent any number of discrete protected
categories as a single discrete attribute whose support corresponds to each of the
possible settings of the original attributes. Consequently, our formal treatment in
this chapter does apply to the case of multiple protected categories. This formal
maneuver, however, does not address the important concept of intersectionality that
refers to the unique forms of disadvantage that members of multiple protected
categories may experience.105

The fact that we allocate a special random variable for group membership does
not mean that we can cleanly partition the set of features into two independent
categories such as “neutral” and “sensitive”. In fact, we will see shortly that suffi-
ciently many seemingly neutral features can often give high accuracy predictions
of group membership. This should not be surprising. After all, if we think of A as
the target variable in a classification problem, there is reason to believe that the
remaining features would give a non-trivial classifier for A.

The choice of sensitive attributes will generally have profound consequences as
it decides which groups of the population we highlight, and what conclusions we
draw from our investigation. The taxonomy induced by discretization can on its
own be a source of harm if it is too coarse, too granular, misleading, or inaccurate.
The act of classifying status in protected categories, and collecting associated data,
can on its own can be problematic. We will revisit this important discussion in the
next chapter.

No fairness through unawareness

Some have hoped that removing or ignoring sensitive attributes would somehow
ensure the impartiality of the resulting classifier. Unfortunately, this practice can
be ineffective and even harmful.

In a typical dataset, we have many features that are slightly correlated with
the sensitive attribute. Visiting the website pinterest.com in the United States,
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Figure 3.4: On the left, we see the distribution of a single feature that differs only
very slightly between the two groups. In both groups the feature follows a normal
distribution. Only the means are slightly different in each group. Multiple features
like this can be used to build a high accuracy group membership classifier. On the
right, we see how the accuracy grows as more and more features become available.

for example, had at the time of writing a small statistical correlation with being
female. The correlation on its own is too small to classify someone’s gender with
high accuracy. However, if numerous such features are available, as is the case in a
typical browsing history, the task of classifying gender becomes feasible at higher
accuracy levels.

Several features that are slightly predictive of the sensitive attribute can be used
to build high accuracy classifiers for that attribute. In large feature spaces sensitive
attributes are generally redundant given the other features. If a classifier trained
on the original data uses the sensitive attribute and we remove the attribute, the
classifier will then find a redundant encoding in terms of the other features. This
results in an essentially equivalent classifier, in the sense of implementing the same
function.

To further illustrate the issue, consider a fictitious start-up that sets out to
predict your income from your genome. At first, this task might seem impossible.
How could someone’s DNA reveal their income? However, we know that DNA
encodes information about ancestry, which in turn correlates with income in some
countries such as the United States. Hence, DNA can likely be used to predict
income better than random guessing. The resulting classifier uses ancestry in
an entirely implicit manner. Removing redundant encodings of ancestry from
the genome is a difficult task that cannot be accomplished by removing a few
individual genetic markers. What we learn from this is that machine learning can
wind up building classifiers for sensitive attributes without explicitly being asked
to, simply because it is an available route to improving accuracy.
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Redundant encodings typically abound in large feature spaces. For example,
gender can be predicted from retinal photographs with very high accuracy.106 What
about small hand-curated feature spaces? In some studies, features are chosen
carefully so as to be roughly statistically independent of each other. In such cases,
the sensitive attribute may not have good redundant encodings. That does not mean
that removing it is a good idea. Medication, for example, sometimes depends on
race in legitimate ways if these correlate with underlying causal factors.21 Forcing
medications to be uncorrelated with race in such cases can harm the individual.

Statistical non-discrimination criteria

Statistical non-discrimination criteria aim to define the absence of discrimination
in terms of statistical expressions involving random variables describing a classifi-
cation or decision making scenario.
Formally, statistical non-discrimination criteria are properties of the joint distribu-
tion of the sensitive attribute A, the target variable Y, the classifier Ŷ or score R,
and in some cases also features X. This means that we can unambiguously decide
whether or not a criterion is satisfied by looking at the joint distribution of these
random variables.

Broadly speaking, different statistical fairness criteria all equalize some group-
dependent statistical quantity across groups defined by the different settings of A.
For example, we could ask to equalize acceptance rates across all groups. This
corresponds to imposing the constraint for all groups a and b:

P{Ŷ = 1 | A = a} = P{Ŷ = 1 | A = b} .

In the case where Ŷ ∈ {0, 1} is a binary classifier and we have two groups a
and b, we can determine if acceptance rates are equal in both groups by knowing
the three probabilities P{Ŷ = 1, A = a}, P{Ŷ = 1, A = b}, and P{A = a} that
fully specify the joint distribution of Ŷ and A. We can also estimate the relevant
probabilities given random samples from the joint distribution using standard
statistical arguments that are not the focus of this chapter.

Researchers have proposed dozens of different criteria, each trying to capture
different intuitions about what is fair. Simplifying the landscape of fairness criteria,
we can say that there are essentially three fundamentally different ones. Each of
these equalizes one of the following three statistics across all groups:

• Acceptance rate P{Ŷ = 1} of a classifier Ŷ
• Error rates P{Ŷ = 0 | Y = 1} and P{Ŷ = 1 | Y = 0} of a classifier Ŷ
• Outcome frequency given score value P{Y = 1 | R = r} of a score R

The three criteria can be generalized to score functions using simple (condi-
tional) independence statements. We use the notation U ⊥ V | W to denote that
random variables U and V are conditionally independent given W. This means that
conditional on any setting W = w, the random variables U and V are independent.
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Table 3.3: Non-discrimination criteria

Independence Separation Sufficiency

R ⊥ A R ⊥ A | Y Y ⊥ A | R

Below we will introduce and discuss each of these conditions in detail. This
chapter focuses on the mathematical properties of and relationships between these
different criteria. Once we have acquired familiarity with the technical matter, we’ll
have a broader debate around the moral and normative content of these definitions
in Chapter 4.

Independence

Our first formal criterion requires the sensitive characteristic to be statistically
independent of the score.

Definition 1. Random variables (A, R) satisfy independence if A ⊥ R.

If R is a score function that satisfies independence, then any classifier Ŷ =
1{R > t} that thresholds the score a value t also satisfies independence. This is
true so long as the threshold is independent of group membership. Group-specific
thresholds may not preserve independence.

Independence has been explored through many equivalent and related defini-
tions. When applied to a binary classifier Ŷ, independence is often referred to as
demographic parity, statistical parity, group fairness, disparate impact and others. In this
case, independence corresponds to the condition

P{Ŷ = 1 | A = a} = P{Ŷ = 1 | A = b} ,

for all groups a, b. Thinking of the event Ŷ = 1 as “acceptance”, the condition
requires the acceptance rate to be the same in all groups. A relaxation of the
constraint introduces a positive amount of slack ε > 0 and requires that

P{Ŷ = 1 | A = a} ≥ P{Ŷ = 1 | A = b} − ε .

Note that we can swap a and b to get an inequality in the other direction. An
alternative relaxation is to consider a ratio condition, such as,

P{Ŷ = 1 | A = a}
P{Ŷ = 1 | A = b}

≥ 1− ε .

Some have argued that, for ε = 0.2, this condition relates to the 80 percent rule that
appears in discussions around disparate impact law.107

Yet another way to state the independence condition in full generality is to
require that A and R must have zero mutual information I(A; R) = 0. Mutual
information quantifies the amount of information that one random variable reveals
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about the other. We can define it in terms of the more standard entropy function
as I(A; R) = H(A) + H(R)− H(A, R). The characterization in terms of mutual
information leads to useful relaxations of the constraint. For example, we could
require I(A; R) ≤ ε.

Limitations of independence

Independence is pursued as a criterion in many papers, for multiple reasons. Some
argue that the condition reflects an assumption of equality: All groups have an
equal claim to acceptance and resources should therefore be allocated proportion-
ally. What we encounter here is a question about the normative significance of
independence, which we extend on in Chapter 4. But there is a more mundane rea-
son for the prevalence of this criterion, too. Independence has convenient technical
properties, which makes the criterion appealing to machine learning researchers. It
is often the easiest one to work with mathematically and algorithmically.

However, decisions based on a classifier that satisfies independence can have
undesirable properties (and similar arguments apply to other statistical criteria).
Here is one way in which this can happen, which is easiest to illustrate if we
imagine a callous or ill-intentioned decision maker. Imagine a company that in
group a hires diligently selected applicants at some rate p > 0. In group b, the
company hires carelessly selected applicants at the same rate p. Even though the
acceptance rates in both groups are identical, it is far more likely that unqualified
applicants are selected in one group than in the other. As a result, it will appear
in hindsight that members of group b performed worse than members of group a,
thus establishing a negative track record for group b.

A real-world phenomenon similar to this hypothetical example is termed the
glass cliff : women and people of color are more likely to be appointed CEO when a
firm is struggling. When the firm performs poorly during their tenure, they are
likely to be replaced by White men.108, 109

This situation might arise without positing malice: the company might have
historically hired employees primarily from group a, giving them a better under-
standing of this group. As a technical matter, the company might have substantially
more training data in group a, thus potentially leading to lower error rates of a
learned classifier within that group. The last point is a bit subtle. After all, if both
groups were entirely homogeneous in all ways relevant to the classification task,
more training data in one group would equally benefit both. Then again, the mere
fact that we chose to distinguish these two groups indicates that we believe they
might be heterogeneous in relevant aspects.

Separation

Our next criterion engages with the limitation of independence that we described.
In a typical classification problem, there is a difference between accepting a positive
instance or accepting a negative instance. The target variable Y suggests one way
of partitioning the population into strata of equal claim to acceptance. Viewed this
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Figure 3.5: Graphical model representation of separation

way, the target variable gives us a sense of merit. A particular demographic group
(A = a) may be more or less well represented in these different strata defined by
the target variable. A decision maker might argue that in such cases it is justified
to accept more or fewer individuals from group a.

These considerations motivate a criterion that demands independence within
each stratum of the population defined by target variable. We can formalize this
requirement using a conditional independence statement.

Definition 2. Random variables (R, A, Y) satisfy separation if R ⊥ A | Y.

The conditional independence statement applies even if the variables take on
more than two values each. For example, the target variable might partition the
population into many different types of individuals.

We can display separation as a graphical model in which R is separated from A
by the target variable Y:

If you haven’t seen graphical models before, don’t worry. All this says is that R
is conditionally independent of A given Y.

In the case of a binary classifier, separation is equivalent to requiring for all
groups a, b the two constraints

P{Ŷ = 1 | Y = 1, A = a} = P{Ŷ = 1 | Y = 1, A = b}
P{Ŷ = 1 | Y = 0, A = a} = P{Ŷ = 1 | Y = 0, A = b} .

Recall that P{Ŷ = 1 | Y = 1} is called the true positive rate of the classifier. It
is the rate at which the classifier correctly recognizes positive instances. The false
positive rate P{Ŷ = 1 | Y = 0} highlights the rate at which the classifier mistakenly
assigns positive outcomes to negative instances. Recall that the true positive rate
equals 1 minus the false negative rate. What separation therefore requires is that
all groups experience the same false negative rate and the same false positive rate.
Consequently, the definition asks for error rate parity.

This interpretation in terms of equality of error rates leads to natural relaxations.
For example, we could only require equality of false negative rates. A false
negative, intuitively speaking, corresponds to denied opportunity in scenarios
where acceptance is desirable, such as in hiring. In contrast, when the task is
to identify high-risk individuals, as in the case of loan default prediction, it is
common to denote the undesirable outcome as the “positive” class. This inverts
the meaning of false positives and false negatives, and is a frequent source of
terminological confusion.
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Why equalize error rates?

The idea of equalizing error rates across has been subject to critique. Much of
the debate has to do with the fact that an optimal predictor need not have equal
error rates in all groups. Specifically, when the propensity of positive outcomes
(P{Y = 1}) differs between groups, an optimal predictor will generally have
different error rates. In such cases, enforcing equality of error rates leads to a
predictor that performs worse in some groups than it could be. How is that fair?

One response is that separation puts emphasis on the question: Who bears the
cost of misclassification? A violation of separation highlights the fact that different
groups experience different costs of misclassification. There is concern that higher
error rates coincide with historically marginalized and disadvantaged groups, thus
inflicting additional harm on these groups.

The act of measuring and reporting group specific error rates can create an
incentive for decision makers to work toward improving error rates through
collecting better datasets and building better models. If there is no way to improve
error rates in some group relative to others, this raises questions about the legitimate
use of machine learning in such cases. We will return to this normative question in
later chapters.

A second line of concern with the separation criterion relates to the use of the
target variable as a stand-in for merit. Researchers have rightfully pointed out
that in many cases machine learning practitioners use target variables that reflect
existing inequality and injustice. In such cases, satisfying separation with respect
to an inadequate target variable does no good. This valid concern, however, applies
equally to the use of supervised learning at large in such cases. If we cannot
agree on an adequate target variable, the right action may be to suspend the use of
supervised learning.

These observations hint at the subtle role that non-discrimination criteria play.
Rather than presenting constraints that we can optimize for without further thought,
they can help surface issues with the use of machine learning in specific scenarios.

Visualizing separation

A binary classifier that satisfies separation must achieve the same true positive
rates and the same false positive rates in all groups. We can visualize this condition
by plotting group-specific ROC curves.

We see the ROC curves of a score displayed for each group separately. The two
groups have different curves indicating that not all trade-offs between true and
false positive rate are achievable in both groups. The trade-offs that are achievable
in both groups are precisely those that lie under both curves, corresponding to the
intersection of the regions enclosed by the curves.

The highlighted region is the feasible region of trade-offs that we can achieve in
all groups. However, the thresholds that achieve these trade-offs are in general also
group-specific. In other words, the bar for acceptance varies by group. Trade-offs
that are not exactly on the curves, but rather in the interior of the region, require
randomization. To understand this point, think about how we can realize trade-offs
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Figure 3.6: ROC curve by group.

Figure 3.7: Intersection of area under the curves.
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on the the dashed line in the plot. Take one classifier that accepts everyone. This
corresponds to true and false positive rate 1, hence achieving the upper right
corner of the plot. Take another classifier that accepts no one, resulting in true
and false positive rate 0, the lower left corner of the plot. Now, construct a third
classifier that given an instance randomly picks and applies the first classifier
with probability 1− p, and the second with probability p. This classifier achieves
true and false positive rate p thus giving us one point on the dashed line in the
plot. In the same manner, we could have picked any other pair of classifiers and
randomized between them. This way we can realize the entire area under the ROC
curve.

Conditional acceptance rates

A relative of the independence and separation criteria is common in debates around
discrimination. Here, we designate a random variable W and ask for conditional
independence of the decision Ŷ and group status A conditional on the variable W.
That is, for all values w that W could take on, and all groups a and b we demand:

P{Ŷ = 1 |W = w, A = a} = P{Ŷ = 1 |W = w, A = b}

Formally, this is equivalent to replacing Y with W in our definition of separation.
Often W corresponds to a subset of the covariates of X. For example, we might
demand that independence holds among all individuals of equal educational at-
tainment. In this case, we would choose W to reflect educational attainment. In
doing so, we license the decision maker to distinguish between individuals with
different educational backgrounds. When we apply this criterion, the burden
falls on the proper choice of what to condition on, which determines whether we
detect discrimination or not. In particular, we must be careful not to condition on
the mechanism by which the decision maker discriminates. For example, an ill-
intentioned decision maker might discriminate by imposing excessive educational
requirements for a specific job, exploiting that this level of education is distributed
unevenly among different groups. We will be able to return to the question of what
to condition on with significantly more substance once we reach familiarity with
causality in Chapter 5.

Sufficiency

Our third criterion formalizes that the score already subsumes the sensitive charac-
teristic for the purpose of predicting the target. This idea again boils down to a
conditional independence statement.

Definition 3. We say the random variables (R, A, Y) satisfy sufficiency if Y ⊥ A | R.

We can display sufficiency as a graphical model as we did with separation
before.
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Figure 3.8: Graphical model representation of sufficiency

Let us write out the definition more explicitly in the binary case where Y ∈
{0, 1}. In this case, a random variable R is sufficient for A if and only if for all
groups a, b and all values r in the support of R, we have

P{Y = 1 | R = r, A = a} = P{Y = 1 | R = r, A = b} .

If we replace R by a binary predictor Ŷ, we recognize this condition as requiring a
parity of positive/negative predictive values across all groups.

Calibration and sufficiency

Sufficiency is closely related to an important notion called calibration. In some
applications it is desirable to be able to interpret the values of the score functions
as if they were probabilities. The notion of calibration allows us to move in
this direction. Restricting our attention to binary outcome variables, we say
that a score R is calibrated with respect to an outcome variable Y if for all score
values r ∈ [0, 1], we have

P{Y = 1 | R = r} = r .

This condition means that the set of all instances assigned a score value r has an r
fraction of positive instances among them. The condition refers to the group of
all individuals receiving a particular score value. Calibration need not hold in
subgroups of the population. In particular, it’s important not to interpret the score
as an individual probability. Calibration does not tell us anything about the outcome
of a specific individual that receives a particular value.

From the definition, we can see that sufficiency is closely related to the idea of
calibration. To formalize the connection we say that the score R satisfies calibration
by group if it satisfies

P{Y = 1 | R = r, A = a} = r ,

for all score values r and groups a. Observe that calibration is the same requirement
at the population level without the conditioning on A.

Fact 2. Calibration by group implies sufficiency.

Conversely, sufficiency is only slightly weaker than calibration by group in the
sense that a simple renaming of score values goes from one property to the other.

Proposition 1. If a score R satisfies sufficiency, then there exists a function ` : [0, 1]→
[0, 1] so that `(R) satisfies calibration by group.
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Proof. Fix any group a and put `(r) = P{Y = 1 | R = r, A = a}. Since R satisfies
sufficiency, this probability is the same for all groups a and hence this map ` is the
same regardless of what value a we chose.

Now, consider any two groups a, b. We have,

r = P{Y = 1 | `(R) = r, A = a}
= P{Y = 1 | R ∈ `−1(r), A = a}
= P{Y = 1 | R ∈ `−1(r), A = b}
= P{Y = 1 | `(R) = r, A = b} ,

thus showing that `(R) is calibrated by group.

We conclude that sufficiency and calibration by group are essentially equivalent
notions.

In practice, there are various heuristics to achieve calibration. For example,
Platt scaling takes a possibly uncalibrated score, treats it as a single feature, and fits
a one variable regression model against the target variable based on this feature.110

We also apply Platt scaling for each of the groups defined by the sensitive attribute.

Calibration by group as a consequence of unconstrained learning

Sufficiency is often satisfied by the outcome of unconstrained supervised learning
without the need for any explicit intervention. This should not come as a surprise.
After all, the goal of supervised learning is to approximate an optimal score
function. The optimal score function we saw earlier, however, is calibrated for any
group as the next fact states formally.

Fact 3. The optimal score r(x) = E[Y | X = x] satisfies group calibration for any group.
Specifically, for any set S we have

P{Y = 1 | R = r, X ∈ S} = r.

We generally expect a learned score to satisfy sufficiency in cases where the
group membership is either explicitly encoded in the data or can be predicted
from the other attributes. To illustrate this point we look at the calibration values
of a standard machine learning model, a random forest ensemble, on an income
classification task derived from the American Community Survey of the US Census
Bureau.111 We restrict the dataset to the three most populous states, California,
Texas, and Florida.

After splitting the data into training and testing data, we fit a random forest
ensemble using the standard Python library sklearn on the training data. We then
examine how well-calibrated the model is out of the box on test data.

We see that the calibration curves for the three largest racial groups in the
dataset, which the Census Bureau codes as “White alone”, “Black or African
American alone”, and “Asian alone”, are very close to the main diagonal. This
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Figure 3.9: Group calibration curves on Census ACS data

means that the scores derived from our random forest model satisfy calibration by
group up to small error. The same is true when looking at the two groups “Male”
and “Female” in the dataset.

These observations are no coincidence. Theory shows that under certain tech-
nical conditions, unconstrained supervised learning does, in fact, imply group
calibration.112 Note, however, that for this to be true the classifier must be able
to detect group membership. If detecting group membership is impossible, then
group calibration generally fails.

The lesson is that sufficiency often comes for free (at least approximately)
as a consequence of standard machine learning practices. The flip side is that
imposing sufficiency as a constraint on a classification system may not be much of
an intervention. In particular, it would not effect a substantial change in current
practices.

How to satisfy a non-discrimination criterion

Now that we have formally introduced three non-discrimination criteria, it is
worth asking how we can achieve them algorithmically. We distinguish between
three different techniques. While they generally apply to all the criteria and
their relaxations that we review in this chapter, our discussion here focuses on
independence.

• Pre-processing: Adjust the feature space to be uncorrelated with the sensitive
attribute.

• In-training: Work the constraint into the optimization process that constructs
a classifier from training data.

• Post-processing: Adjust a learned classifier so as to be uncorrelated with the
sensitive attribute.

The three approaches have different strengths and weaknesses.
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Pre-processing is a family of techniques to transform a feature space into a rep-
resentation that as a whole is independent of the sensitive attribute. This approach
is generally agnostic to what we do with the new feature space in downstream
applications. After the pre-processing transformation ensures independence, any
deterministic training process on the new space will also satisfy independence.
This is a formal consequence of the well-known data processing inequality from
information theory.113

Achieving independence at training time can lead to the highest utility since
we get to optimize the classifier with this criterion in mind. The disadvantage
is that we need access to the raw data and training pipeline. We also give up a
fair bit of generality as this approach typically applies to specific model classes or
optimization problems.

Post-processing refers to the process of taking a trained classifier and adjusting
it possibly depending on the sensitive attribute and additional randomness in
such a way that independence is achieved. Formally, we say a derived classifier
Ŷ = F(R, A) is a possibly randomized function of a given score R and the sensitive
attribute. Given a cost for false negatives and false positives, we can find the derived
classifier that minimizes the expected cost of false positive and false negatives
subject to the fairness constraint at hand. Post-processing has the advantage that it
works for any black-box classifier regardless of its inner workings. There’s no need
for re-training, which is useful in cases where the training pipeline is complex. It’s
often also the only available option when we have access only to a trained model
with no control over the training process.

Post-processing sometimes even comes with an optimality guarantee: If we post-
process the Bayes optimal score to achieve separation, then the resulting classifier
will be optimal among all classifiers satisfying separation.114 Conventional wisdom
has it that certain machine learning models, like gradient boosted decision trees,
are often nearly Bayes optimal on tabular datasets with many more rows than
columns. In such cases, post-processing by adjusting thresholds is nearly optimal.

A common objection to post-processing, however, is that the resulting classifier
uses group membership quite explicitly by setting different acceptance thresholds
for different groups.

Relationships between criteria

The criteria we reviewed constrain the joint distribution in non-trivial ways. We
should therefore suspect that imposing any two of them simultaneously over-
constrains the space to the point where only degenerate solutions remain. We will
now see that this intuition is largely correct. What this shows, in particular, is that
if we observe that one criterion holds, we expect others to be violated.

Independence versus sufficiency

We begin with a simple proposition that shows how in general independence
and sufficiency are mutually exclusive. The only assumption needed here is that
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the sensitive attribute A and the target variable Y are not independent. This is a
different way of saying that group membership has an effect on the statistics of
the target variable. In the binary case, this means one group has a higher rate of
positive outcomes than another. Think of this as the typical case.

Proposition 2. Assume that A and Y are not independent. Then sufficiency and indepen-
dence cannot both hold.

Proof. By the contraction rule for conditional independence,

A ⊥ R and A ⊥ Y | R =⇒ A ⊥ (Y, R) =⇒ A ⊥ Y .

To be clear, A ⊥ (Y, R) means that A is independent of the pair of random
variables (Y, R). Dropping R cannot introduce a dependence between A and Y.

In the contrapositive,

A 6⊥ Y =⇒ A 6⊥ R or A 6⊥ Y | A .

Independence versus separation

An analogous result of mutual exclusion holds for independence and separation.
The statement in this case is a bit more contrived and requires the additional
assumption that the target variable Y is binary. We also additionally need that the
score is not independent of the target. This is a rather mild assumption, since any
useful score function should have correlation with the target variable.

Proposition 3. Assume Y is binary, A is not independent of Y, and R is not independent
of Y. Then, independence and separation cannot both hold.

Proof. Assume Y ∈ {0, 1}. In its contrapositive form, the statement we need to
show is

A ⊥ R and A ⊥ R | Y =⇒ A ⊥ Y or R ⊥ Y

By the law of total probability,

P{R = r | A = a} = ∑
y

P{R = r | A = a, Y = y}P{Y = y | A = a}

Applying the assumption A ⊥ R and A ⊥ R | Y, this equation simplifies to

P{R = r} = ∑
y

P{R = r | Y = y}P{Y = y | A = a}

Applied differently, the law of total probability also gives

P{R = r} = ∑
y

P{R = r | Y = y}P{Y = y}
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Combining this with the previous equation, we have

∑
y

P{R = r | Y = y}P{Y = y} = ∑
y

P{R = r | Y = y}P{Y = y | A = a}

Careful inspection reveals that when y ranges over only two values, this equa-
tion can only be satisfied if A ⊥ Y or R ⊥ Y.

Indeed, we can rewrite the equation more compactly using the symbols p =
P{Y = 0}, pa = P{Y = 0 | A = a}, ry = P{R = r | Y = y}, as:

pr0 + (1− p)r1 = par0 + (1− pa)r1.

Equivalently, p(r0 − r1) = pa(r0 − r1).
This equation can only be satisfied if r0 = r1, in which case R ⊥ Y, or if p = pa

for all a, in which case Y ⊥ A.

The claim is not true when the target variable can assume more than two values,
which is a natural case to consider.

Separation versus sufficiency

Finally, we turn to the relationship between separation and sufficiency. Both
ask for a non-trivial conditional independence relationship between the three
variables A, R, Y. Imposing both simultaneously leads to a degenerate solution
space, as our next proposition confirms.

Proposition 4. Assume that all events in the joint distribution of (A, R, Y) have positive
probability, and assume A 6⊥ Y. Then, separation and sufficiency cannot both hold.

Proof. A standard fact (Theorem 17.2 in Wasserman’s text115) about conditional
independence shows

A ⊥ R | Y and A ⊥ Y | R =⇒ A ⊥ (R, Y) .

Moreover,
A ⊥ (R, Y) =⇒ A ⊥ R and A ⊥ Y .

Taking the contrapositive completes the proof.

For a binary target, the non-degeneracy assumption in the previous proposition
states that in all groups, at all score values, we have both positive and negative
instances. In other words, the score value never fully resolves uncertainty regarding
the outcome. Recall that sufficiency holds for the Bayes optimal score function.
The proposition therefore establishes an important fact: Optimal scores generally
violate separation.

The proposition also applies to binary classifiers. Here, the assumption says
that within each group the classifier must have nonzero true positive, false positive,
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true negative, and false negative rates. We can weaken this assumption a bit and
require only that the classifier is imperfect in the sense of making at least one false
positive prediction. What’s appealing about the resulting claim is that its proof
essentially only uses a well-known relationship between true positive rate (recall)
and positive predictive value (precision). This trade-off is often called precision-recall
trade-off.

Proposition 5. Assume Y is not independent of A and assume Ŷ is a binary classifier
with nonzero false positive rate. Then, separation and sufficiency cannot both hold.

Proof. Since Y is not independent of A there must be two groups, call them 0 and 1,
such that

p0 = P{Y = 1 | A = 0} 6= P{Y = 1 | A = 1} = p1 .

Now suppose that separation holds. Since the classifier is imperfect this means
that all groups have the same non-zero false positive rate FPR > 0, and the same
true positive rate TPR ≥ 0. We will show that sufficiency does not hold.

Recall that in the binary case, sufficiency implies that all groups have the same
positive predictive value. The positive predictive value in group a, denoted PPVa
satisfies

PPVa =
TPRpa

TPRpa + FPR(1− pa)
.

From the expression we can see that PPVa = PPVb only if TPR = 0 or FPR = 0.
The latter is ruled out by assumption. So it must be that TPR = 0. However, in this
case, we can verify that the negative predictive value NPV0 in group 0 must be
different from the negative predictive value NPV1 in group 1. This follows from
the expression

NPVa =
(1− FPR)(1− pa)

(1− TPR)pa + (1− FPR)(1− pa)
.

Hence, sufficiency does not hold.

In the proposition we just proved, separation and sufficiency both refer to the
binary classifier Ŷ. The proposition does not apply to the case where separation
refers to a binary classifier Ŷ = 1{R > t} and sufficiency refers to the underlying
score function R.

Case study: Credit scoring

We now apply some of the notions we saw to credit scoring. Credit scores support
lending decisions by giving an estimate of the risk that a loan applicant will default
on a loan. Credit scores are widely used in the United States and other countries
when allocating credit, ranging from micro loans to jumbo mortgages. In the
United States, there are three major credit-reporting agencies that collect data on
various lendees. These agencies are for-profit organizations that each offer risk
scores based on the data they collected. FICO scores are a well-known family of
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proprietary scores developed by the FICO corporation and sold by the three credit
reporting agencies.

Regulation of credit agencies in the United States started with the Fair Credit
Reporting Act, first passed in 1970, that aims to promote the accuracy, fairness, and
privacy of consumer of information collected by the reporting agencies. The Equal
Credit Opportunity Act, a United States law enacted in 1974, makes it unlawful for
any creditor to discriminate against any applicant the basis of race, color, religion,
national origin, sex, marital status, or age.

Score distribution

Our analysis relies on data published by the Federal Reserve.116 The dataset pro-
vides aggregate statistics from 2003 about a credit score, demographic information
(race or ethnicity, gender, marital status), and outcomes (to be defined shortly).
We’ll focus on the joint statistics of score, race, and outcome, where the race
attributes assume four values detailed below.

Table 3.4: Credit score distribution by ethnicity

Race or ethnicity Samples with both score and outcome

White 133,165

Black 18,274

Hispanic 14,702

Asian 7,906

Total 174,047

The score used in the study is based on the TransUnion TransRisk score.
TransUnion is a US credit-reporting agency. The TransRisk score is in turn based
on FICO scores. The Federal Reserve renormalized the scores for the study to vary
from 0 to 100, with 0 being least creditworthy.

The information on race was provided by the Social Security Administration,
thus relying on self-reported values. The cumulative distribution of these credit
scores strongly depends on the racial group as the next figure reveals.

Performance variables and ROC curves

As is often the case, the outcome variable is a subtle aspect of this data set. Its
definition is worth emphasizing. Since the score model is proprietary, it is not
clear what target variable was used during the training process. What is it then
that the score is trying to predict? In a first reaction, we might say that the goal
of a credit score is to predict a default outcome. However, that’s not a clearly
defined notion. Defaults vary in the amount of debt recovered, and the amount of
time given for recovery. Any single binary performance indicator is typically an
oversimplification.
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Figure 3.10: Cumulative density of scores by group.

What is available in the Federal Reserve data is a so-called performance variable
that measures a serious delinquency in at least one credit line of a certain time period.
More specifically, the Federal Reserve states

(the) measure is based on the performance of new or existing accounts
and measures whether individuals have been late 90 days or more on
one or more of their accounts or had a public record item or a new
collection agency account during the performance period.

With this performance variable at hand, we can look at the ROC curve to get a
sense of how predictive the score is in different demographics.

The meaning of true positive rate is the rate of predicted positive performance
given positive performance. Similarly, false positive rate is the rate of predicted negative
performance given a positive performance.

We see that the shapes appear roughly visually similar in the groups, although
the ‘White’ group encloses a noticeably larger area under the curve than the ‘Black’
group. Also note that even two ROC curves with the same shape can correspond to
very different score functions. A particular trade-off between true positive rate and
false positive rate achieved at a threshold t in one group could require a different
threshold t′ in the other group.

Comparison of different criteria

With the score data at hand, we compare four different classification strategies:
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Figure 3.11: ROC curve of credit score by group.

• Maximum profit: Pick possibly group-dependent score thresholds in a way
that maximizes profit.

• Single threshold: Pick a single uniform score threshold for all groups in a
way that maximizes profit.

• Independence: Achieve an equal acceptance rate in all groups. Subject to
this constraint, maximize profit.

• Separation: Achieve an equal true/false positive rate in all groups. Subject
to this constraint, maximize profit.

To make sense of maximizing profit, we need to assume a reward for a true
positive (correctly predicted positive performance), and a cost for false positives
(negative performance predicted as positive). In lending, the cost of a false positive
is typically many times greater than the reward for a true positive. In other words,
the interest payments resulting from a loan are relatively small compared with the
loan amount that could be lost. For illustrative purposes, we imagine that the cost
of a false positive is 6 times greater than the return on a true positive. The absolute
numbers don’t matter. Only the ratio matters. This simple cost structure glosses
over a number of details that are likely relevant for the lender such as the terms of
the loan.

There is another major caveat to the kind of analysis we’re about to do. Since
we’re only given aggregate statistics, we cannot retrain the score with a particular
classification strategy in mind. The only thing we can do is to define a setting
of thresholds that achieves a particular criterion. This approach may be overly
pessimistic with regards to the profit achieved subject to each constraint. For this
reason and the fact that our choice of cost function was rather arbitrary, we do not
state the profit numbers. The numbers can be found in the original analysis,114

which reports that ‘single threshold’ achieves higher profit than ‘separation’, which
in turn achieves higher profit than ‘independence’.

What we do instead is to look at the different trade-offs between true and false
positive rate that each criterion achieves in each group.
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Figure 3.12: ROC curves with optimal thresholds for different criteria.

We can see that even though the ROC curves are somewhat similar, the resulting
trade-offs can differ widely by group for some of the criteria. The true positive rate
achieved by max profit for the Asian group is twice of what it is for the Black group.
The separation criterion, of course, results in the same trade-off in all groups.
Independence equalizes acceptance rate, but leads to widely different trade-offs.
For instance, the Black group has a false positive rate more than three times higher
than the false positive rate of the Asian group.

Calibration values

Finally, we consider the non-default rate by group. This corresponds to the
calibration plot by group.

We see that the performance curves by group are reasonably well aligned. This
means that a monotonic transformation of the score values would result in a score
that is roughly calibrated by group according to our earlier definition. Due to the
differences in score distribution by group, it could nonetheless be the case that
thresholding the score leads to a classifier with different positive predictive values
in each group. Calibration is typically lost when taking a multi-valued score and
making it binary.

Inherent limitations of observational criteria

The criteria we’ve seen so far have one important aspect in common. They are
properties of the joint distribution of the score, sensitive attribute, and the target
variable. In other words, if we know the joint distribution of the random vari-
ables (R, A, Y), we can without ambiguity determine whether this joint distribution
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Figure 3.13: Calibration values of credit score by group.

satisfies one of these criteria or not. For example, if all variables are binary, there
are eight numbers specifying the joint distributions. We can verify each of the
criteria we discussed in this chapter by looking only at these eight numbers and
nothing else. We can broaden this notion a bit and also include all other features
in X, not just the group attribute. So, let’s call a criterion observational if it is a
property of the joint distribution of the features X, the sensitive attribute A, a
score function R and an outcome variable Y. Intuitively speaking, a criterion is
observational if we can write it down unambiguously using probability statements
involving the random variables at hand.

Observational definitions have many appealing aspects. They’re often easy
to state and require only a lightweight formalism. They make no reference to
the inner workings of the classifier, the decision maker’s intent, the impact of the
decisions on the population, or any notion of whether and how a feature actually
influences the outcome. We can reason about them fairly conveniently as we saw
earlier. In principle, observational definitions can always be verified given samples
from the joint distribution—subject to statistical sampling error.

This simplicity of observational definitions also leads to inherent limitations.
What observational definitions hide are the mechanisms that created an observed
disparity. In one case, a difference in acceptance rate could be due to spiteful
consideration of group membership by a decision maker. In another case, the
difference in acceptance rates could reflect an underlying inequality in society
that gives one group an advantage in getting accepted. While both are cause for
concern, in the first case discrimination is a direct action of the decision maker. In
the the other case, the locus of discrimination may be outside the agency of the
decision maker.

Observational criteria cannot, in general, give satisfactory answers as to what the
causes and mechanisms of discrimination are. Subsequent chapters, in particular
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our chapter on causality, develop tools to go beyond the scope of observational
criteria.

Chapter notes

For the early history of probability and the rise of statistical thinking, turn to books
by Hacking,117, 118 Porter,103 and Desrosières.102

The statistical decision theory we covered in this chapter is also called (signal)
detection theory and is the subject of various textbooks. What we call classification
is also called prediction in other contexts. Likewise, classifiers are often called
predictors. For a graduate introduction to machine learning, see the text by Hardt
and Recht.119 Wasserman’s textbook Wasserman115 provides additional statistical
background, including an exposition of conditional independence that is helpful in
understanding some of the material of the chapter.

Similar fairness criteria to the ones reviewed in this chapter were already
known in the 1960s and 70s, primarily in the education testing and psychometrics
literature.120 The first and most influential fairness criterion in this context is
due to Cleary.121, 122 A score passes Cleary’s criterion if knowledge of group
membership does not help in predicting the outcome from the score with a linear
model. This condition follows from sufficiency and can be expressed by replacing
the conditional independence statement with an analogous statement about partial
correlations.123

Einhorn and Bass124 considered equality of precision values, which is a relax-
ation of sufficiency as we saw earlier. Thorndike125 considered a weak variant of
calibration by which the frequency of positive predictions must equal the frequency
of positive outcomes in each group, and proposed achieving it via a post-processing
step that sets different thresholds in different groups. Thorndike’s criterion is in-
comparable to sufficiency in general.

Darlington123 stated four different criteria in terms of succinct expressions
involving the correlation coefficients between various pairs of random variables.
These criteria include independence, a relaxation of sufficiency, a relaxation of
separation, and Thorndike’s criterion. Darlington included an intuitive visual
argument showing that the four criteria are incompatible except in degenerate
cases. Lewis126 reviewed three fairness criteria including equal precision and equal
true/false positive rates.

These important early works were re-discovered later in the machine learning
and data mining community.120 Numerous works considered variants of inde-
pendence as a fairness constraint.127, 128 Feldman et al.107 studied a relaxation of
demographic parity in the context of disparate impact law. Zemel et al.129 adopted
the mutual information viewpoint and proposed a heuristic pre-processing ap-
proach for minimizing mutual information. As early as 2012, Dwork et al.130

argued that the independence criterion was inadequate as a fairness constraint. In
particular, this work identified the problem with independence we discussed in
this chapter.

73



The separation criterion appeared under the name equalized odds,114 alongside
the relaxation to equal false negative rates, called equality of opportunity. These crite-
ria also appeared in an independent work131 under different names. Woodworth et
al.132 studied a relaxation of separation stated in terms of correlation coefficients.
This relaxation corresponds to the third criterion studied by Darlington.123

ProPublica133 implicitly adopted equality of false positive rates as a fairness cri-
terion in their article on COMPAS scores. Northpointe, the maker of the COMPAS
software, emphasized the importance of calibration by group in their rebuttal134 to
ProPublica’s article. Similar arguments were made quickly after the publication
of ProPublica’s article by bloggers including Abe Gong. There has been extensive
scholarship on actuarial risk assessment in criminal justice that long predates the
ProPublica debate; Berk et al.135 provide a survey with commentary.

Variants of the trade-off between separation and sufficiency were shown by
Chouldechova136 and Kleinberg et al.137 Each of them considered somewhat
different criteria to trade-off. Chouldechova’s argument is very similar to the proof
we presented that invokes the relationship between positive predictive value and
true positive rate. Subsequent work138 considers trade-offs between relaxed and
approximate criteria. The other trade-off results presented in this chapter are new
to this book. The proof of the proposition relating separation and independence
for binary classifiers, as well as the counterexample for ternary classifiers, is due to
Shira Mitchell and Jackie Shadlen, pointed out to us in personal communication.

The credit score case study is from Hardt, Price, and Srebro114 However, we
highlight the independence criterion in our plots, whereas the authors of the paper
highlight the equality of opportunity criterion instead. The numbers about the
racial composition of the dataset come from the “Estimation sample” column of
Table 9 on the webpage for the Federal Reserve report.116

A dictionary of criteria

For convenience we collect some demographic fairness criteria below that have been
proposed in the past (not necessarily including the original reference). We’ll match
them to their closest relative among the three criteria independence, separation,
and sufficiency. This table is meant as a reference only and is not exhaustive. There
is no need to memorize these different names.

Table 3.5: List of statistical non-discrimination criteria

Name Criterion Note Reference

Independence Indep. Equiv. Calders et al. (2009)
Group fairness Indep. Equiv.

Demographic parity Indep. Equiv.
Conditional statistical parity Indep. Relax. Corbett-Davies et al. (2017)

Darlington criterion (4) Indep. Relax. Darlington (1971)
Equal opportunity Separ. Relax. Hardt, Price, Srebro (2016)

Equalized odds Separ. Equiv. Hardt, Price, Srebro (2016)
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Name Criterion Note Reference

Conditional procedure accuracy Separ. Equiv. Berk et al. (2017)
Avoiding disparate mistreatment Separ. Equiv. Zafar et al. (2017)

Balance for the negative class Separ. Relax. Kleinberg et al. (2016)
Balance for the positive class Separ. Relax. Kleinberg et al. (2016)

Predictive equality Separ. Relax. Corbett-Davies et al. (2017)
Equalized correlations Separ. Relax. Woodworth (2017)
Darlington criterion (3) Separ. Relax. Darlington (1971)

Cleary model Suff. Relax. Cleary (1966)
Conditional use accuracy Suff. Equiv. Berk et al. (2017)

Predictive parity Suff. Relax. Chouldechova (2016)
Calibration within groups Suff. Equiv. Chouldechova (2016)
Darlington criterion (1), (2) Suff. Relax. Darlington (1971)
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4
Relative notions of fairness

In Chapter 3, we considered a range of statistical criteria that help to highlight
group-level differences in both the treatments and outcomes that might be brought
about by the use of a machine learning model. But why should we be concerned
with group-level differences? And how should we decide which groups we should
be concerned with? In this chapter, we’ll explore the many different normative
reasons we might have to object to group-level differences. This is a subtle,
but important, shift in focus from Chapter 2, where we considered some of the
normative reasons why individuals might object to decision-making schemes that
distribute desirable resources or opportunities. In this chapter, we’ll focus on why
we might be concerned with the uneven allocation of resources and opportunities
across specific groups and society overall. In particular, we’ll review the normative
foundations that ground claims of discrimination and calls for distributive justice.
We’ll then try to connect these arguments more directly to the statistical criteria
developed in Chapter 3, with the aim of giving those criteria greater normative
substance.

A point of terminology: We will use the terms unfairness and discrimination
roughly synonymously. Linguistically, the term discrimination puts more emphasis
on the agency of the decision maker. We also specifically avoid using the terminol-
ogy “disparate treatment” and “disparate impact” in this chapter as these are legal
terms of art with more precise meanings and legal significance; we’ll address these
in Chapter 6.

Systematic relative disadvantage

Discussions of discrimination in the context of machine learning can seem odd if
you consider that the very point of many machine learning applications is to figure
out how to treat different people differently — that is, to discriminate between them.
However, what we call discrimination in this chapter is not different treatment in
and of itself, but rather treatment that systematically imposes a disadvantage on
one social group relative to others. The systematicity in the differences in treatment
and outcomes is what gives discrimination its normative force as a concept.

To better appreciate this point, consider three levels at which people might be
subject to unfair treatment. First, a person might be subject to the prejudice of
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an individual decision maker — for example, a specific hiring manager whose
decisions are influenced by racial animus. Second, a person might encounter
systematic barriers to entering certain occupations, perhaps because members of
the group to which they belong are not viewed as fit to be engineers, doctors,
lawyers, etc., regardless of their true capabilities or potential. For example, in
some occupations women might have limited employment opportunities across
the board due to their gender. Finally, certain personal characteristics might be
an organizing principle for society overall such that members of certain groups
are systematically excluded from opportunities across multiple spheres of life. For
example, race and gender might limit people’s access not only to employment, but
to education, credit, housing, etc.

In the examples from the previous paragraph, we have relied on race and gender
precisely because both have served, historically, as organizing principles for many
societies; they are not just the idiosyncratic bases upon which specific employers
or professions have denied members of these groups important opportunities.139

This helps to explain why these are characteristics of particular concern and
why others might not be. For example, we might not care that a particular employer
or profession has systematically rejected left-handed applicants beyond the fact
that we might find the decision arbitrary and thus irrational, given that handedness
might not have anything to do with job performance.

But if handedness became the basis for depriving people of opportunities across
the board and not just by this one decision maker or in this one domain, we might
begin to view it as problematic. To the extent that handedness dictates people’s
standing and position in society overall, it would rise to the level of a characteristic
worthy of special concern.140

Race and gender — among others enumerated in discrimination law and
described in more detail in Chapter 6 — rise to such a level because they have
served as the basis for perpetuating systematic relative disadvantage across the
board. In extreme cases, certain characteristics can provide the foundations for a
strict social hierarchy in which members of different groups are slotted into more
or less desirable positions in society. Such conditions can create the equivalent of a
caste system,141 in which certain groups are confined to a permanent position of
relative disadvantage.1

It is also important to note the unique threat posed by differential treatment on
the basis of characteristics that persist intergenerationally. For example, children are
often assumed to belong to the same racial group as their biological parents, making
the relative disadvantage that people may experience due to their race especially
systematic: children born into families that have been unfairly deprived of resources
and opportunities will have less access to these resources and opportunities, thereby
limiting from the start of their lives how effectively they might realize their potential
— even before they might be subject to discrimination themselves.

1Of course, such stratification need not originate from formal policies or from one or even a small
handful of highly consequential decisions. Many seemingly small actions can cumulatively reinforce
relative advantages and disadvantages, ranging from selectively advertising a job through word of
mouth to sexist comments in the workplace (more on this in Chapter 8).
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Six accounts of the wrongfulness of discrimination

Scholars have developed many normative theories to account for the wrongfulness
of discrimination — specifically the wrongfulness of treating people differently
according to characteristics like race, gender, or disability. While each of these
theories is concerned with how such differential treatment gives rise to systematic
relative disadvantage, they differ in how they understand what makes decision
making on the basis of these characteristics morally objectionable.

Relevance: One reason — and perhaps the most common reason — to object to
discrimination is because it relies on characteristics that bear little to no relevance
to the outcome or quality that decision makers might be trying to predict or
assess.142, 141 For example, one reason why it might be wrong to base employment
decisions on characteristics like race or gender is that these characteristics bear no
relevance to determinations about job applicants’ capacity to perform on the job.
Note that this is a variant of the objection that we covered in Chapter 2, where
individuals might contest decisions based on the fact that they were rendered on
the basis of irrelevant information. In this case, it is important not only that the
reliance on irrelevant factors leads to mistakes, but that those mistakes lead to
systematic relative disadvantage for particular social groups.

Generalizations: Or we might argue that the harm lies in the needlessly coarse
groupings perpetuated by decisions made on the basis of race or gender, even if
these can be shown to possess some statistical relevance to the decision at hand.82

This harkens back to another idea in Chapter 2: that people deserved to be treated
as individuals and assessed on their unique merits. As you’ll recall, the intuitive
idea of a perfectly individualized assessment is unattainable. Any form of judgment
based on individual characteristics must draw on some generalizations and past
experience. Yet we might still object to the coarseness of the generalizations,
especially if there is obviously additional information that might provide a more
granular — and thus more accurate — way to draw distinctions. For example, we
might object if women were excluded as firefighters based on the assumption that
women as a group are less likely to meet the strength requirements, as opposed to
administering a fitness test to applicants of all genders.

Prejudice: Another common argument for why discrimination is wrongful is
that it amounts to a form of prejudicial decision making, in which members of
certain groups are presumed to be of inferior status. Rather than being merely a
problem of relevance or granularity, as in the previous perspectives discussed in
this section, it is a problem of beliefs, in which decision makers hold entire groups
in lesser regard than others. For example, the problems with decisions guided
by racial animus or misogyny is not merely that they may result in inaccurate
predictions, but that decision makers hold these views in the first place.143, 144, 139

Disrespect: A related, but distinct, idea is that making decisions on the basis
of such characteristics is wrongful when it demeans those who possess such
characteristics.139, 145 On this account, the problem with discrimination is that it
casts certain groups as categorically inferior to others and thus not worthy of
equal respect. This objection differs from those based on prejudice because the
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harm is not located in decision makers’ belief about the inferiority of members of
particular groups, but in what decision makers’ actions communicate about the
social status of the groups. For example, the problem with sexist hiring practices
is not merely that they confine women to particular roles in society or that they
are based on prejudiced beliefs, but that they suggest that women are inferior to
men. Understood in this way, discrimination is harmful not merely to the specific
person subject to an adverse decision but to the entire group to which the person
belongs because it harms the group’s social standing in the community.

Immutability: An entirely different argument for why discrimination is wrong-
ful is because it involves treating people differently according to characteristics
over which they possess no control. On this account, the reason we should care
about differences in the treatment of, for example, people with or without a dis-
ability is because people with a disability may not have any control over their
disability.146, 147, 148 As explored in Chapter 2, decisions that rest on immutable
characteristics deny people that possess these characteristics the agency to achieve
different outcomes from the decision-making process, effectively condemning all
such people to adverse outcomes.[2 This amounts to wrongful discrimination
specifically when the immutable characteristic in question is one whose use in
decision making will give rise to systematic relative disadvantage.

Compounding injustice: Or perhaps the problem with discrimination stems
from the fact that it may compound existing injustice.149 In many ways, this is
an extension of the previous argument about control, but with a specific focus on
the effects of past injustice. In particular, it is an argument that people cannot be
morally culpable for certain facts about themselves that are not the result of their
own actions, especially if these facts are the result of having been subject to some
past injustice. Failing to take into account the fact that members of certain groups
might have been, in the past, subject to many of the types of problems described
above could lead decision makers to feel perfectly justified in treating members of
these groups differently. Yet the reason people might appear differently at the time
of the decision might be some past injustice, including past discrimination.150

Ignoring this fact would mean that decision makers subject specific groups
to worse decisions simply because they have already suffered some earlier harm.
Note that this objection has nothing to do with concerns with accuracy; in fact, it
suggests, as we first discussed in Chapter 2, that we might have a moral obligation
to sometimes discount the effects of factors over which people have no control, even
if that means making less accurate predictions. In Chapter 2, we considered this
principle without any particular concern for distributional outcomes; here, we can
adapt the principle to be one that accounts for the wrongfulness of discrimination by
pointing out that suffering some past mistreatment due to someone’s membership

2While this is especially problematic if the very same decisions could be made at least as accurately
by relying on criteria over which people do possess some control, we might still object to decisions
based on immutable characteristics even if there are no alternative means to make decisions at an
equal level of accuracy. For example, it may be that genetic information is the most reliable basis
upon which to make predictions about a person’s future health. We might nevertheless object to the
idea that people should be charged higher insurance premiums or denied a job (because they would
impose greater healthcare costs on an employer) due to their genes.
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in a particular group might be the very thing outside someone’s control.
None of the above six accounts is a complete theory of the wrongfulness of

discrimination. Some situations that we might view as obviously objectionable can
be caught by certain theories, but missed by others. For example, objections to
religious discrimination cannot be grounded on the idea that people lack control
over their religious affiliations, but could be supported by reference to concerns
with prejudice or disrespect.151 Or to take another example: even if decision
makers’ actions are not prejudicial or demeaning, their decisions may still be based
on irrelevant characteristics — a possibility that we’ll consider in the next section.
While there is unlikely to be a single answer to the question of why discrimination
is wrong, these theories are still helpful because they highlight that we often need
to consider many factors when deciding whether subjecting particular groups to
systematic relative disadvantage is morally justified.

Intentionality and indirect discrimination

So far we have focused on why taking certain characteristics into account when
making consequential decisions can be normatively objectionable. According to
each of these accounts of the wrongfulness of discrimination, the harm originates
from the choice to rely on these characteristics when making such decisions. But
what about when decisions do not rely on these characteristics? Does removing
these characteristics from the decision-making process ensure that it is fair?

An easy case is when the decision maker purposefully relies on proxies for these
characteristics (e.g., relying on a person’s name as a proxy for their gender) in order
to indirectly discriminate against members of a specific group (e.g., women). The
fact that such decisions do not consider the characteristics explicitly may not render
them any less problematic, given that the decision maker only does so with the goal
of treating members of these different groups differently. Thus, the wrongfulness
of discrimination is not limited to the mere use of certain characteristics in decision
making, but extends to any intentional efforts to subject members of specific groups
to systematically disfavorable treatment, even if this is achieved via the use of
proxies for such characteristics.152 With that in mind, we might want to check
whether any decision-making process leads to disparate outcomes for different
groups as a way of potentially smoking out intentional discrimination pursued
with the aid of proxies. If we discover disparities in outcomes, we might want
to check whether the decision-making process was purposefully orchestrated to
achieve this, even if the decision maker didn’t seem to take these characteristics
into account explicitly.

But what about decisions that are not purposefully designed to discriminate?
What if the decisions are not motivated by prejudice? Does the mere fact that a
decision-making process can lead to quite disparate outcomes for different groups
mean that it is unfair? What if the decision maker can offer some reason for making
decisions in this particular manner (e.g., that the employer needs people with a
specific accounting credential and that such credentials happen to be held more
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commonly among certain groups than others)?
We can extend some of the reasoning first introduced in the previous section

to try to answer these questions. In this case, rather than asking whether the
criteria under consideration are serving merely as proxies for some characteristic
of concern, we could instead ask whether the choice of criteria can be justified
by demonstrating that they actually serve the stated goals of the decision maker.
Decision-making processes that do little to serve these goals, but nevertheless
subject specific groups to systematically less favorable outcomes raise the same
question about relevance that arise in cases of intentional and direct discrimination.
If the chosen criteria lack relevance to the decision at hand, but result in systematic
relative disadvantage for a specific group, then relying on them can easily become
functionally equivalent to relying on group membership directly despite its lack of
relevance to the decision at hand. In both cases, the reliance on irrelevant criteria is
objectionable because it results in systematic relative disadvantage for particular
groups.

Equality of opportunity

What about a process that produces disparities in outcomes but does, in fact, serve
to advance the goals of the decision maker? This is a harder case to reason about.
But before doing so, let’s take a step back.

Equality of opportunity is an idea that many scholars see as the goal of limiting
discrimination. Equality of opportunity can be understood in both narrow and
broad terms. The narrow view holds that we should treat similar people similarly
given their current degree of similarity. The broad view holds that we should
organize society in such a way that people of similar ability and ambition can
achieve similar outcomes. A position somewhere in the middle holds that we
should treat seemingly dissimilar people similarly, on the belief that their current
degree of dissimilarity is the result of something that we should discount (e.g., past
injustice or misfortune). Let’s tackle each view in turn, and see what each would
imply about the question above.

The narrow view

Let’s illustrate the narrow view of equality of opportunity with the notion of
“individual fairness”: that people who are similar with respect to a task should be
treated similarly.130 For now we take similar to mean closeness in features deemed
relevant to the task at hand. Individual fairness is a comparative notion of fairness
in that it asks whether there are any differences in the way that similar people are
being treated. It is not directly concerned with the way members of different groups
might be treated. Instead, the comparison is between all people as individuals, not
between the members of specific groups. Of course, if we agree in advance that
people’s race, gender, and so forth are irrelevant to a task at hand, then satisfying
individual fairness will also limit the degree to which people who differ according
to these characteristics will receive different treatment. But this is only true to the
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extent that such characteristics are deemed irrelevant; it is not an inherent part of
the definition of individual fairness.

Individual fairness is related to consistency and some of the concerns with
arbitrariness that we explored in Chapter 2. We often expect consistent treatment
in the absence of differences that would seem to justify differential treatment,
especially when the treatment determines access to important opportunities. These
expectations can be so strong that a failure to meet them will provoke a visceral
reaction: why did I not get the desired treatment or outcome even though I am
seemingly similar along the relevant dimensions to someone that did?

What it means for people to be similar is not a given, though. In the philo-
sophical literature, the common answer to this question is that people should be
treated similarly to those who are understood to be similarly meritorious — that is,
that people should be judged according to their abilities and ambitions.153 This
understanding is so common that the concept of equality of opportunity — in
this narrow formulation — is often taken to be synonymous with the concept of a
meritocracy. Access to desirable resources and opportunities should be dictated
not by the social group to which someone happens to belong, but rather by the
characteristics that are legitimately relevant to the institution seeking to advance
its goals in allocating these resources and opportunities.

Much depends on what we decide to be the goals of the decision making process.
It could be defined as maximizing some outcome of interest to the decision maker,
such as job performance. When applicants who are predicted to perform similarly
well on the job are treated similarly in the hiring process, it is often interpreted
as meritocracy. Or we might say that a firm has a legitimate interest in hiring
workers with the necessary training to effectively perform a job, so it might only
hire those who have completed the necessary training. If making decisions on this
basis leads to uneven hiring rates across groups, under the narrow view of equality
of opportunity, the decision maker is blameless and under no obligation to adjust
the decision-making process.

But note that employers could just as easily decide on goals that bear no obvious
relationship to what we perceive as merit, such as hiring applicants who would
be likely to accept a particularly low salary. With this target in place, decision
makers would only have an obligation to treat people similarly who possess similar
sensitivities to pay, not those who are likely to perform similarly well on the job.
Would it make sense to describe this as a case in which employers ensure equality
of opportunity?139 This reveals that the narrow view of equality of opportunity
does not dictate what the abiding normative principle should be that determines
how we view people as similar; it only commands that similar people be treated
similarly. It thus possesses little normative substance beyond consistency. (And
even then, there may be practical limits to this principle. For example, an employer
may still need to choose only one applicant among the many that are predicted to
perform similarly well on the job — and those that did not get the job might not
object that they had been treated unfairly.)

The people subject to decisions might have their own ideas about how to define
similarity, ideas which might be very different from those of the decision maker.
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This might be because they do not share the same goals as the decision maker, but it
might also be because they believe that there are reasons completely independent of
the goals of the decision-making process to view certain people as similar. Perhaps
the reason we might view two different people as deserving of some opportunity
is because they are equally likely to make the most of the opportunity or because
they are equally needy — not only equally meritorious. In other words, we might
judge job applicants as similar because they are likely to benefit similarly from the
job, not only because they are likely to perform similarly well on the job. In many
cases, the exact basis upon which we might view people as relevantly similar in any
given context can be quite challenging for us to articulate because our conception
of similarity might rely on varied normative considerations.

The broad view

A broad view of equality of opportunity sets aside questions about the fairness of
any given decision-making process and instead focuses on the degree to which
society overall is structured to allow people of similar ability and ambition to
achieve similar success. This perspective has been most famously developed by
philosopher John Rawls under the banner of “fair equality of opportunity”. To
simplify the argument considerably, the only defensible reason for why people
might experience different outcomes over the course of their lives is if they possess
different ability or ambition.154

Anything about the design of particular institutions in society that prevents
such people from realizing their potential violates this broader understanding of
equality of opportunity because it deprives equally deserving people of the same
chance at success. For example, a society that fails to provide a means for similarly
capable individuals born into different circumstances — one into a wealthy family
and another into a poor family — to achieve similar levels of success would violate
this understanding of equality of opportunity.

According to this view, the basic institutions that help to cultivate people’s
potential over the course of their lives must be structured to ensure that people of
similar ability and ambition have similar chances of obtaining desirable positions
in society — along with the many benefits that come with such positions. Thus,
if education is an important mechanism by which people’s potential might be
fostered, a broad view of equality of opportunity would command that schools be
funded such that students of equal ability and ambition — whether from wealthy or
poor families — face the same prospects of long-term success. Thus, any advantage
that such children might receive from their wealthy families must be offset by a
corresponding intervention to ensure that such children from poor families may
flourish to the same degree. If wealthier children benefit from a local tax base
that can fund a high-quality public school, then society must put in place policies
that make available similar amounts of funding to the public schools that educate
poorer children.

Note that this is an intervention that aims to equalize the quality of the educa-
tion to which wealthy and poor students will have access; it is not an intervention
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into the admissions policy of any particular school. This helps to highlight the
fact that the broad view of equality of opportunity is not really about fairness in
decision making; it is about the design of society’s basic institutions, with the goal
of preventing unjust inequalities from arising in the first place. In theory, abiding
by such a principle of equality of opportunity would result in a casteless society
in which no one is permanently confined to a position of disadvantage despite
having the potential to succeed under different circumstances.155 Society would be
structured to ensure social mobility for those who possess the relevant ability and
ambition to achieve certain goals.

The middle view

Somewhere between the two poles we have just explored is a middle view that
is narrowly concerned with the fairness of decision making, yet sensitive to the
dynamics by which disadvantage might be perpetuated in society more broadly.
This view holds that decision makers have an obligation to avoid perpetuating
injustice.150 Specifically, they must, to some degree, treat seemingly dissimilar
people similarly when the causes of these dissimilarities are themselves problematic.
For example, those who adopt this view might argue that universities should
not simply rank order applicants by grade point averages or standardized test
scores; instead, they must assess applicants with respect to the opportunities that
applicants have been afforded over the course of their childhoods, recognizing
that performance in school and standardized tests might differ according to past
opportunity rather than according to innate ability and ambition.

To give an example, the state of Texas has a law guaranteeing admission to
state-funded universities to all students who graduate in the top 10% of their high
school class. This can be seen as in keeping with the middle view. If access to
opportunity varies geographically, the 10% rule identifies individuals with ability
and ambition without systematically disadvantaging those who had the misfortune
of growing up without access to well-funded high schools.

This middle view differs from the broad view insofar as it accepts that students
of equal potential will not receive equally high-quality education leading up to
the moment when they finally apply to college. Yet it also differs from the narrow
view insofar as it refuses to allow colleges to ignore what might account for
applicants’ current dissimilarity at the time that they submit their applications.
Instead, the middle view suggests that there is some burden on colleges to attempt
to compensate for the disadvantages that some applicants may have faced over
their lifetimes such that they might appear less competitive than other applicants
from more privileged backgrounds.

As a result, the middle view calls for interventions not at the level of the design
of institutions, but at the level of the design of decision-making processes. It
suggests that ensuring equality of opportunity requires assessing people as they
would have been had they been afforded comparable opportunities in the past as
other people of equal potential seeking the current opportunity. In certain respects,
the middle view seems to be trying to realize the goals of the broad view via a
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much more limited intervention: while the broad view would seem to demand that
children from wealthier and poorer families have access to equally high-quality
education throughout their lives, the middle view only seeks to compensate for the
disadvantages experienced by poorer students relative to their wealthier peers at
specific decision-making junctures that are thought to be particularly high-stakes
— in this case, in college admissions. The middle view tends to focus on these
junctures because they seem to be where there is an opportunity to greatly alter
a child’s life course and to allow them to much more effectively realize their
potential.156 Indeed, this is often why they are perceived as high-stakes.

While the interventions imagined by the middle view might seem narrower than
those in the broad view because they do not require a more radical restructuring of
the basic institutions of society, it’s worth noting that the more discrete interventions
of the middle view are designed to bring about much greater change than any
one of the more continuous interventions required of the broad view. The middle
view targets specific decisions that can create a sudden step change in people’s
life prospects, whereas the broad view aims to obviate the need for such dramatic
interventions in decision making by ensuring equality throughout people’s lives.
In other words, the middle view will require sudden and substantial change at
specific moments of decision making, while the broad view will require a significant
redistribution of resources on an ongoing basis.

While the middle view clearly prohibits ignoring the reasons for differences in
merit between people, it does not offer a clear prescription for how to take them
into account. Taking it to its logical conclusion would result in interventions that
seem extreme: it could require imagining people without the effects of centuries
of oppression that they and their ancestors might have endured, suggesting, for
instance, that a bank should approve a large loan to someone who does not in
reality have the ability to repay it. That said, there are other areas of decision
making where this view might seem more reasonable. For example, in employment,
we might expect hiring managers to adopt a similar approach as admissions officers
at universities, assessing people according to the opportunities they have been
afforded, discounting certain differences in qualifications that might owe to factors
outside their control, especially if these are qualifications that the employer could
help cultivate on the job. The middle view has particular purchase in the case
of insurance, where we really might want insurers to ignore the additional costs
that they are likely to face in setting the price of a policy for someone with an
expensive pre-existing condition outside the person’s control. The extent to which
we expect decision makers to bear such responsibility tends to be context-specific
and contested. We will return to it shortly.

Tensions between the different views

There is an obvious conflict between the view that decision makers should treat
people similarly according to how they appear at the time of decision making
and the view that decision makers should treat people similarly according to how
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they would have appeared had they enjoyed similar privileges and advantages
as others of equal ability and ambition.3 Thus, a person who at present seems to
be more meritorious with respect to some opportunity might object if they are
passed over in favor of someone who at present seems less meritorious — even if
the decision maker believes the other person would be more meritorious than the
person objecting if they had both enjoyed the same privileges and advantages.4

A similar tension arises in the way we might try to deal with discrimination.
The narrow view of equality of opportunity suggests that the way to deal with
discrimination is to ensure that decisions are only made on the basis of factors
that are genuinely relevant to the task at hand. In other words, treating similar
people similarly with respect to the task should, in most cases, rule out treating
people differently according to their gender, race, etc. because these characteristics
are not likely to be relevant to the task at hand. Thus, committing to the narrow
view of equality of opportunity should help to keep these factors from entering
the decision making process. In contrast, the middle view suggests that we might
want to deal with discrimination by explicitly considering these characteristics
when making decisions because it is likely that these characteristics would help to
explain a good deal of the deprivation and disadvantage that people might have
faced over the course of their lives. In other words, in order to understand how
people who possess these characteristics might have appeared under counterfactual
circumstances, decisions must take these characteristics into account. This again
seems to set up a conflict because realizing a commitment to the middle view of
equality of opportunity necessitates violating the requirements imposed by the
narrow view of equality of opportunity.

John Roemer says that these tensions boil down to different views on “when
the competition starts” for desirable positions in society: at what point in the
course of our lives are we ultimately responsible for how we might compare to
others?157 Given that we have no control over the wealth of the families into
which we are born or the quality of the education we might receive, we might
discount any differences between people that owe to such differences. In other
words, we might say that we don’t think it’s reasonable to adopt a narrow view

3These tensions are sometimes expressed as a conflict between interventions that are narrowly
concerned with the process by which decisions are made and interventions that are concerned with
the outcomes produced by such decisions — between procedural and substantive notions of fairness.
We avoid this perspective and language because the distinction easily blurs when you recognize that
decision makers might sometimes make changes to the decision-making process with an eye towards
their effect on outcomes. Most obviously, policies often try to avoid certain distributional outcomes
by limiting the degree to which decisions can take certain factors into account. For example, in
prohibiting employers from considering job applicants’ gender or race, policies might not only be
aiming to ensure that such decisions are made on the basis of relevant information, but aiming to
reduce disparities in hiring rates along these lines.

4Note that there is no obvious tension between the narrow and broad view because the broad
view would require that people of equal ability and ambition have received similar opportunities
from a much earlier stage in their lives, thus already appearing similar by the time they arrive at the
present moment of decision making. Of course, this would only be true in a society that engages
in a significant amount of redistribution — a prospect to which proponents of the narrow view of
equality of opportunity might strongly object.
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of equality of opportunity when assessing applicants to college because many of
the relevant differences between applicants might not have emerged from a fair
competition. In contrast, we might think that employers are justified in assessing
job applicants, especially those for more senior roles that require many years of
experience, according to the ability and ambition that they have demonstrated
over the course of their careers. That is, we might agree that a narrow view of
equality of opportunity is appropriate in this case because people who are well into
their careers have had a fair chance to cultivate their ability and demonstrate their
ambition. Tensions arise when there is disagreement over where this transition
occurs in people’s lives. Someone who has been passed over in favor of another
person who seems less meritorious might consider it unfair because she thinks that
whatever differences exist between the two of them have emerged during a period
of fair competition between them. The decision maker might disagree, believing
that the differences actually owe to advantages that the passed-over individual
accrued during a period prior to the start of a fair competition.

Table 4.1: Some key differences between the three views of
equality of opportunity.

Goal
Intervention
point

Who bears the cost of
uplifting historically
disadvantaged groups

Narrow
view

Ensure that people
who are similarly
qualified for an
opportunity have
similar chances of
obtaining it

Decision making No one5

Middle
view

Discount differences
due to past injustice
that accounts for
current differences in
qualifications

Decision making,
especially critical
life opportunities

Decision maker (who
may pass on the cost to
decision subjects)

Broad
view

Ensure people of equal
ability and ambition
are able to realize their
potential equally well

Government, on
a continuous
basis

Taxpayers

5Interventions under the narrow view include adopting more relevant decision criteria and
collecting more data about decision subjects that helps make more accurate decisions. These
interventions ultimately benefit the goals of the decision maker (to the extent that those goals are
morally legitimate), so we don’t view them as costs to the decision maker.
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Merit and desert

Even if we buy into the middle and broad view of equality of opportunity, we may
want some normative principles that allow us to decide just how far decision makers
and the government must go in seeking to counteract inequality. More concretely,
what differences between people actually justify differences in outcomes, if any?
So far, we have tended to answer this question by describing those differences that
cannot or should not serve as a justification for differences in outcomes. But it’s
also worth reflecting more deeply on the principles that seem to allow for — or
perhaps even require — these differences in outcomes. In this section, we’ll discuss
two principles that help answer this question. The first, which already has played
an important role in our discussion, is the principle of merit. The second is the
principle of desert, meaning that which is deserved.

Merit plays an important role in all three views of equality of opportunity. In
our discussion of the narrow view of equality of opportunity, merit is one way
to establish how people are similar and thus who should be treated similarly. In
the broad view, merit — in the form of abilities and ambitions — allows for the
possibility that people of differing merit might not achieve comparable outcomes
in life, but it also dictates the amount of support that must be provided to people
who have the same potential as their more privileged peers but who would be
unable to realize their potential as effectively in the absence of that support. Merit
is crucial to the idea that there is a moral obligation to help people realize their
potential — but no obligation to go any further than that. Finally, merit plays a
similar role in the middle view insofar as decision makers are expected to evaluate
people according to how meritorious they would have been under counterfactual
circumstances. Understood in this way, all three views are perhaps more similar
than they might first appear: each is calling for people of similar merit to have the
same chances of success.

But what, exactly, is merit? Merit is not an objective property possessed by
any given individual. Instead, merit concerns the qualities possessed by a specific
person that are expected to help advance the goal of the institution who is offering
the sought-after opportunity.153 Thus, what makes a particular job applicant
meritorious is how well that applicant is likely to advance the goals of the employer.
While it is tempting to think that there are some universal answers to what makes
any given job applicant more or less meritorious than others (e.g., how smart they
are, how hardworking they are, etc.), this is not the case. Instead, merit, on this
account, is purely a function of what an employer views as relevant to advancing its
goals, whatever that might be. And different employers might have very different
goals and very different ideas about what would do the most to help advance them.
The goals of the employer might not be the goals that the job applicant would like
the goals to be or what outsiders would want them to be. Others’ conception of
merit might differ from employers’ because they simply have different ideas about
the goals that employers should have in the first place.

The subjectiveness of this view of merit seems to be in conflict with earlier
discussions of abilities and ambitions, which are presented as universal properties
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that are not tied to the goals of any particular institution who is providing the
sought-after opportunity. In suggesting that people of similar ability and ambition
should have similar chances of obtaining desirable positions in society, there seems
to be an implicit belief that people can be compared on their merits regardless of
the opportunity in question. This reflects the fact that there are often widely-held
and well-entrenched beliefs about the relevance of certain criteria in determining
whether someone is deserving of a particular opportunity. An employer that
assesses people according to their intelligence and industriousness is commonly
understood to be assessing people according to their merit because these are the
properties that can be safely assumed to help the employer advance its own interest.
But there is no reason why these need to be the properties according to which job
applicants must be assessed in order to ensure that the employer’s decisions are
based on merit.

This observation anticipates a related notion: desert. Unlike merit, desert is
not tied to how well a person might help to advance the interests of the decision
maker, but how well a person has performed along the dimensions that a decision
maker is expected to evaluate people. For example, we might say that a person who
has worked diligently throughout school to obtain high grades is more meritorious
with respect to a job opportunity than a person who blew off classes and received
middling grades, even if both people are likely to advance the goals of an employer
equally well. In this account, people deserve certain opportunities given that they
might have good reason to believe that certain investments would help them gain
access to the sought-after opportunity. In other words, decision makers have an
obligation to provide opportunities to people who have taken actions for which
they deserve to be rewarded.

This principle can help to explain why we believe that people who plan to
start a family should have the same chance of securing a job as others who do
not when they demonstrate equal ability and ambition, even if starting a family
requires employees to go on leave for extended periods and even if it increases
the likelihood that employees will quit, thereby imposing costs on employers that
might otherwise be avoided. While the employer’s goal might be to recruit people
who are likely to work diligently without interruption and who are likely to remain
at the company indefinitely, selecting among applicants on this basis might cause
an employer to disfavor applicants who deserve to be hired in light of their ability
and ambition. Notably, would-be mothers, who are more likely than their peers to
take time off or quit their jobs to start a family (due to entrenched gender norms
around the division of parental responsibilities), should not be passed over in
favor of others if they have all made the same investments in preparing themselves
to apply for these positions. The principle of desert says that those who have
cultivated the necessary skills to succeed on the job should all be assessed similarly,
regardless of differences in the likelihood that applicants will need to take time off
or give up their jobs.

Discussions of merit and desert also help to highlight that there can be quite
different justifications for the constraints or demands that we might place on
decision makers. In some cases, we might argue that people are simply morally
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entitled to certain treatment. For example, we might say that it is wrong to hold
people responsible for characteristics about themselves over which they have no
control, even if doing so would be in the rational interest of a decision maker.
Likewise, we might say that people are owed certain opportunities in light of their
ability and ambition, even if the decision maker would prefer to judge people on a
different basis. These are what philosophers call deontological arguments: moral
reasons why some actions are preferable to others regardless of the consequences
of these actions. We must discount the effects of bad luck and take merit into
account because that is what fairness demands.

In contrast, we might argue that the way decision makers treat people should be
dictated by the consequences of such actions. For example, we might say that merit-
based decision making is justified on the grounds that allocating opportunities
according to merit helps to advance the interest of society, not just the individual
seeking a particular opportunity or the decision maker providing the opportunity.
Hiring on the basis of ability and ambition may have the consequences of enhancing
overall welfare if it means people who are particularly well prepared to undertake
some activity are more likely to obtain the opportunity to do so. Merit-based
decision making is thus justified because it puts individuals’ talents to good use for
society’s collective benefit — not because any given individual is morally entitled
to a particular opportunity in light of their merits. We might further argue that
differential treatment on the basis of merit incentivizes and rewards productive
investment that benefits all of society.

Of course, there are also consequentialist arguments in favor of interventions
designed to uplift those who have experienced disadvantage or discrimination in
the past. For example, society suffers overall when members of specific groups are
denied the opportunity to realize their true potential because society forgoes the
collective benefits that might be brought about by the contributions of such groups.

The cost of fairness

Different views of equality of opportunity — as well as the notions of merit and
desert on which such views depend — allocate the responsibility and associated
costs of dealing with unfairness quite differently. Notably, the middle view places
the burden on individual decision makers and specific institutions regardless of
the speed with which or the extent to which a person is able to realize their
potential. For example, we might expect universities to incur some up front costs
in admitting students from less privileged backgrounds because universities may
have to invest additional resources in helping bring those students up to speed
with their more privileged peers. This could take the form of providing classes
over the summer leading up to the start of formal undergraduate programs. Or
it could take the form of designing introductory courses without taking much
background knowledge as a given, which might spend some time reviewing
material that is familiar to students from better funded high schools, but perhaps
new to those who come from less well-funded school districts. Universities might
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even invest in programs that seek to limit the degree to which the inequalities
that exist between students prior to enrolling in college carry through their college
experiences. For example, universities might offer financial scholarships to poorer
students with the goal of allowing them to avoid having to work in order to support
themselves, thereby allowing these students to devote a similar amount of time to
their studies as their more privileged peers. Such scholarships could also help to
avoid saddling poorer students with significant debt, which might suppress future
earnings and negatively influence career choices — burdens that richer students
without significant debt need not navigate. Interventions along these lines blur the
distinction between the middle and broad view of equality of opportunity because
they seem targeted not at remedying some past unjust inequality but at preventing
an unjust inequality from re-emerging. Chapter 8 will cover such interventions in
greater depth.

Despite these efforts, universities may find that their investments in these kinds
of interventions may take many years to pay off: students from less privileged back-
grounds might trail their peers from more privileged backgrounds in the grades
that they obtain over the course of their undergraduate careers, but ultimately
achieve comparable success once they enter the labor market.

Likewise, employers who hire candidates that they recognize as having great
potential, but also the need for additional support, might not be the employers who
enjoy the payoff of such investments. Employees might take another job before the
original employer feels that it has recouped its investment. This is an important
aspect of the middle view of equality of opportunity because it highlights that it
might not always be in the rational interest of decision makers to behave in these
ways. (This might cut the other way as well, though: an unconstrained decision
maker might discount someone who seems meritorious because the decision maker
recognizes that the person has benefited from good luck — and is thus lacking in
the ability or ambition that they are actually searching for.)

The middle view is thus not simply an argument that decision makers must
attend to their long-term self interests; it is an argument that certain institutions
are the right actors to incur some cost in the service of remedying inequality and
injustice, even if there is no guarantee of obtaining a reward of at least equivalent
value.

This contrasts with the broad view of equality of opportunity, where the
government is understood to be the appropriate actor to facilitate the necessary
redistribution to compensate for unjust disparities, likely through direct taxation
and transfers. According to the broad view, the government — which is to say,
everyone who pays taxes to the government — bears the burden to counteract the
advantages that would otherwise be enjoyed by, for example, students from more
privileged backgrounds. To the extent that interventions by employers or other
institutions are necessary, the government should subsidize their efforts with tax
money. In contrast, the middle view places this burden on specific decision makers
to compensate for the disadvantages that people have already experienced.

This all suggests a number of difficult questions: To what extent should the
burden for past discrimination fall on individual decision makers? On what times
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scale should we attempt to correct the effects of historical injustice? And is it even
possible to offset the cumulative result of the thousands of moments in which
people treat each other unequally over the course of a lifetime? We’ll return to these
questions in Chapter 6 when we consider, from a legal and practical perspective,
who we might view as best positioned to incur these costs.

Connecting statistical and moral notions of fairness

We now attempt to map some of the moral notions we’ve discussed so far in this
chapter to the statistical criteria from Chapter 3. Of course, many of the concepts in
this chapter, such as whether a decision subject has control over an attribute used
for decision making, cannot be expressed in the statistical language of conditional
probabilities and expectations. Further, even for notions that do seem to translate
to statistical conditions, we reiterate our usual note of caution that statistical criteria
alone cannot certify that a system is fair. As just one reason for this, the criteria in
Chapter 3 are invariant to the application rates of different groups. For example,
if 50% of loan applicants from a particular group decided not to apply for some
reason, a classifier that satisfied independence/demographic parity before the
change in application rates would still satisfy independence/demographic parity
after the change. The same is true of sufficiency/calibration and separation/error
rate parity. Yet, we wouldn’t consider a bank, employer, or another institution to
be fair if it discouraged applications from certain people or groups. This is related
to Selbst et al.’s framing trap: a “failure to model the entire system over which
[fairness] will be enforced”.158

But we must also resist the opposite extreme, which is the view that statistical
criteria have no normative content. We take the position that statistical criteria are
one facet of what it means for a sociotechnical system to be fair and, combined
with procedural protections, can help us achieve different moral goals.

Demographic parity

With those caveats out of the way, let’s start with a relatively simple statistical
criterion: demographic parity. It has a tenuous but discernible relationship to the
broad view of equality of opportunity insofar as it aims to equalize outcomes. The
high-level similarity between the two is the idea of proportional distribution of
resources. But moral notions never map exactly to technical criteria. Let us look at
the differences between them as a way of understanding the relationship.

The broad view of equality of opportunity is concerned with people’s life
outcomes (such as wealth) rather than discrete moments of decision making. Still,
we may hope that imposing some notion of equality in decisions that affect the
outcome of interest (such as jobs in the case of wealth) will lead to equality in the
corresponding outcome. Empirically, however, it is far from clear that imposing
equality in the short term will lead to equality in the long term. In fact, theoretical
work has shown that this is not always the case.159
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Further, equality of outcome — that is, enforcing equal life outcomes — ignores
differences in ability and ambition between people that might reasonably justify
differences in outcomes. This also happens to be the most common criticism
of equality of outcome: it rules out the particular understanding of merit-based
decision making that underpins the application of machine learning in many
settings.

Even though this is often considered a fatal objection to equality of outcome,
the criticism loses much of its force when applied to demographic parity. To try to
justify demographic parity despite individual differences in ability and ambition,
we acknowledge those differences but argue that these cancel out at the level
of groups; thus, while decisions made about individuals can be attuned to the
differences between them, we require the benefits and burdens of those decisions
to be equally distributed among groups, on average.

But which groups should we pay attention to? As before, we pay special
attention to group differences when we consider them especially likely to arise
due to unjust historical conditions or to compound over time. These correspond
to the axes along which society was historically and is currently stratified. In this
view, we may care about equality of outcome not just for its own sake but also
because inequality of outcome is a good indicator that there might be inequality of
opportunity in the broad sense of the term.160 In other words, certain inequalities
in outcomes might not have arisen had there not been some past inequalities in
opportunity.

There are many other gaps between demographic parity and equality of out-
come. We’ll mention just one more: not all decision subjects (and groups) may
value the resource equally. Targeted ads may be helpful to wealthier individuals by
informing them about things their money can buy, but prey upon the economic
insecurities of poorer individuals (e.g. payday loans161). Policing may be helpful
to some communities but put a burden on others, depending on the prejudices of
police officers. In these cases, actual outcomes — benefits and harms — can be
vastly different despite statistical parity in allocation.

Calibration

Recall from Chapter 3 that if group membership is redundantly encoded in the
features, which is roughly true in sufficiently rich datasets, then calibration is
a consequence of unconstrained supervised learning. Thus, it can be achieved
without paying explicit attention to group membership. In other words, imposing
calibration as a requirement is not much of an intervention.

Still, the notion has intuitive appeal: if a score is calibrated by group, then
we know that a score value (say, 10% risk of default) indicates the same rate of
positive outcomes (e.g., default rate) in all groups. By the same token, it has
some diagnostic usefulness from a fairness perspective such as flagging 'irrational'
discrimination. If the classifier explicitly encodes a preference for one group or a
prejudice against another (or a human decision maker exercises such a preference
or prejudice), the resulting distribution will not be calibrated by group.
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Calibration can also be viewed as a sanity check for optimization. Precisely
because calibration is implied by unconstrained optimization, we can detect opti-
mization failures from violations of calibration. But that’s all it is: a sanity check. A
model can be egregiously inaccurate and still satisfy calibration. Indeed, a model
with no discriminative power that always simply outputs the mean outcome of the
population is perfectly calibrated. A model that is highly accurate for one group
(optimal as defined in Chapter 3) while always predicting the mean for another
group is also perfectly calibrated.

Calibration by group fits with a narrow view of equality of opportunity. Sup-
pose that a decision maker uses only features deemed relevant, while group
membership is deemed irrelevant. Then calibration by group says that the decision
maker does not consider group membership beyond the extent to which it is
encoded in task-relevant features. The decision may justify group differences in
outcomes by appeal to differences in relevant features.

Some nontrivial normative justification is required for violating calibration in
models used for decision making. We have discussed many such justifications,
such as a belief that the risk arises partly from factors that the decision subject
should not be held accountable for.

The similarity criterion

Let’s return to the similarity criterion: treating similar people similarly. As we
discussed, the normative substance of this notion largely comes down to what we
mean by similar. One common view is to think of it as closeness with respect to
features that relate to qualifications for the task at hand, interpreting features at
face value.

To translate this to a technical notion, we can imagine defining a task-specific
similarity function or metric between two feature vectors representing individuals.
We can then insist that for any two individuals who are sufficiently similar, the
decisions they receive be correspondingly similar. We call this the similarity
criterion. This notion was made precise and analyzed by Cynthia Dwork, Moritz
Hardt, Toniann Pitassi, et al.130 Once we have a metric, we can solve a constrained
optimization problem. The optimization objective is as usual (e.g., minimizing the
difference between predicted and observed job performance) and the similarity
criterion is the constraint.

We can illustrate this approach in the context of online behavioral advertis-
ing. Our discussion assumes that we view advertisements as allocating access to
opportunity (e.g., through targeting job openings or credit offers). Ad networks
collect demographic information about individuals, such as their browsing history,
geographical location, and shopping behavior, and utilize this to assign a person to
one of a few dozen segments. Segments have names such as “White Picket Fences,”
a market category with median household income of just over $50,000, aged 25

to 44 with kids, with some college education, etc. Individuals in a segment are
considered similar for marketing purposes, and advertisers are allowed to target
ads only at the level of segments and not individuals.
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This reflects the narrow view of equality of opportunity. If two individuals
differ only on dimensions that are deemed irrelevant to the advertiser’s commercial
interests, say religion, they will be in the same segment and thus are expected to
see the same ads. On the other hand, if some people or social groups have had
advantages throughout their lives that have enabled a certain income level, then
the similarity criterion allows the benefits of those advantages to be reflected in the
ads that they see.

Targeted advertising is a particularly good domain to apply these ideas. There is
an intermediary — the ad network — that collapses feature vectors into categories
(i.e., ad segments), and only exposes these categories to the advertisers, rather than
directly allowing advertisers to target individuals. The ad network should construct
the segments in such a way that members who are similar for advertising purposes
must be in the same segment. For example, it would not be acceptable to include a
segment corresponding to disability, because disability is not a relevant targeting
criterion for the vast majority of types of ads. In domains other than targeted
advertising, say college admissions, applying these ideas is more challenging.
Absent an intermediary like the ad network, it is up to each decision maker to
provide transparency into their similarity metric.

This narrow interpretation of the similarity criterion relates to other formal
definitions of individual fairness, such as, the notion of meritocratic fairness in the
context of bandit learning.162 The normative content of the similarity criterion,
however, extends beyond the narrow view of equality of opportunity if we broaden
the principles from which we construct a similarity metric. For example, the notion
of similarity might explicitly adjust features based on consideration of past injustice
and disadvantage. We might agree at the outset that an SAT test score of 1200

under certain circumstances corresponds to a score of 1400 under more favorable
background conditions.

Comparisons such as these are closely related to Roemer’s formal definition
of equality of opportunity.157 Roemer envisions a partition of the population into
types based on “easily observable and nonmaniupulable” features that relate to
“differential circumstances of individuals for which we believe they should not be
held accountable”. The formal definition then compares individuals who expend
the same quantile of effort relative to their type.

Randomization, thresholding, and fairness

If we think about applying the similarity criterion to a task like hiring, we run
into another problem: pairs of candidates who are extremely similar may fall on
opposite sides of the score threshold, because we have to draw the line somewhere.
This would violate the similarity criterion. One way to overcome this is to insist
that the classifier be randomized.

Randomization sometimes offends deeply held moral intuitions, especially in
domains such as criminal justice, by conjuring the specter of decisions made based
on a coin flip. But there are several reasons why randomization may not just be
acceptable but necessary for fairness in some cases (in addition to the fact that it

95



Figure 4.1: A randomized classifier. Only randomized classifiers can satisfy the
similarity criterion. Two similar individuals would have similar scores and thus
similar probabilities of selection.

allows us to treat similar people similarly, at least in a probabilistic sense). In fact,
Ronen Perry and Tal Zarsky present numerous examples of cases where the law
requires that consequential decisions be based on lotteries.163

To understand the justification for randomized decision making, we must
recognize that precisely controlled and purposeful randomness is not the same as
arbitrariness or capriciousness. Suppose these three conditions hold: a resource
to be allocated is indivisible, there are fewer units of it than claimants, and there
is nothing that entitles one claimant to the resource any more or any less than
other claimants. Then randomization may be the only egalitarian way to break the
tie. This is the principle behind lotteries for allocation of low-rent public housing
and immigration visas. The same principle applies to burdens rather than valued
resources, as seen in the random selection of people for jury duty or tax audits.163

But the whole point of employing machine learning is that there does exist
a way to rank the claims of the applicants, so the scenarios of interest to us are
more complicated than the above examples. The complication is that there is a
conflict between the goals of treating similar people similarly (which requires
randomization) and minimizing unpredictability in the decision (which requires
avoiding randomization).

One critical distinction that affects the legitimacy of randomization is whether
there are equivalent opportunities for which an applicant might be eligible. This is
generally true in the case of hiring or lending, and not true in the case of pre-trial
detention. Randomization is more justifiable in the former case because it avoids
the problem of an applicant perpetually falling just short of the selection threshold.
If randomization is employed, a reasonably qualified but not stellar job applicant
might have to apply to several jobs, but will eventually land one.164

Another way to avoid the problem of similar candidates falling on opposite
sides of a cutoff is to redesign the system so that decisions are not binary. This is
again easier for some institutions than others. A lender can account for different
levels of risk by tailoring the interest rate for a loan rather than rejecting the loan
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altogether. In contrast, a binary notion of determination of guilt is built into the
criminal justice system.6 This is not easy to change. Note that determinations of
guilt are not predictions; they are meant to reflect some binary ground truth and
the goal of the criminal justice system is to uncover it.

The normative underpinnings of error rate parity

Of the three main families of statistical criteria in Chapter 3, we have discussed in-
dependence / demographic parity and sufficiency / calibration, leaving separation
/ error rate parity. Error rate parity is the hardest criterion to rigorously connect to
any moral notion. At the same time, it is undeniable that it taps into some widely
held fairness intuition. ProPublica’s study of the COMPAS criminal risk prediction
system was so powerful because of the finding that Black defendants had “twice
the false positive rate” of White defendants.133

But there is no straightforward justification for this intuition, which has led
to error rate parity becoming a topic of fierce debate.165, 166 Building on this
scholarship, we provide our view of why we should care about error rate parity.

We’ll assume a prediction-based resource allocation problem such as lending
that has a substantial degree of inherent uncertainty with respect to the predictabil-
ity of outcomes. In contrast, error rate disparity often comes up in perception
problems like facial recognition or language detection where there is little or no in-
herent uncertainty.167, 168 The crucial normative difference is that in face recognition,
language detection, and similar applications, there is no notion of a difference in
qualification between individuals that could potentially justify dissimilar treatment.
Thus, assuming that misclassification imposes a cost on the subject, it is much more
straightforward to justify why unequal error rates are problematic.

Another observation to set the stage: the moral significance of error rate is
asymmetric. One type of error, roughly speaking, corresponds to unjust denial (of
freedom or opportunity) and the other corresponds to overly lenient treatment.
In most domains, the first type is much more significant as a normative matter
than the second. For example, in the context of bail decisions, it is primarily
the disparity in the rates of pretrial detention of non-recidivists that’s worrisome,
rather than disparities in the rates of pretrial release of recidivists. While it is true
that the release of would-be recidivists has a cost in the form of a threat to public
safety, that cost depends on the total error and not the distribution of that error
between groups. Thus, it is not necessarily meaningful to simply compare error
rates between groups.

Error rate parity and the middle view of equality of opportunity

Recall that the middle view of equality of opportunity takes into account historical
and present social conditions that may affect why people’s qualifications may differ.

6That said, there have been proposals to envision an alternate system where the degree of
punishment is calibrated to the strength of the evidence. Schauer, Frederick. Profiles, Probabilities, and
Stereotypes. Cambridge, MA: Harvard University Press, 2006.
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To understand a decision making system with respect to the middle view, it is
critical to know if the effects of the decisions might themselves perpetuate these
conditions in society.

Unfortunately, this is hard to do with the data available at the moment of
decision making, especially if the features (that encode decision subjects’ qualifica-
tions) are not available. One thing we can do even without the features is to look
at differences in base rates (i.e., rates at which different groups achieve desired
outcomes, such as loan repayment or job success). If the base rates are significantly
different — and if we assume that individual differences in ability and ambition
cancel out at the level of groups — it suggests that people’s qualifications may
differ due to circumstances beyond the individual.

But base rates alone don’t shed light on whether the classifier might perpetuate
existing inequalities. For this analysis, what’s important is whether the classifier
imposes an unequal burden on different groups. There are many reasonable ways
to measure the burden, but since we consider one type of error — mistakenly
classifying someone as undeserving or high-risk — to be especially egregious,
we can consider the rate of such misclassification among members of a group as
a proxy for the burden placed on that group. This is especially true when we
consider the possibility of spillover effects: for example, denying pretrial release
has effects on defendants’ families and communities.

When a group is burdened by disproportionately high error rates, it suggests
that the system may perpetuate cycles of inequality. Indeed, Aziz Huq argues
that for this reason, the criminal justice system entrenches racial stratification, and
this is the primary racial inequity in algorithmic criminal justice.169 To be clear,
the effect of institutions on communities is an empirical and causal question that
cannot be boiled down to error rates, but given the limitations of observational
data available in typical decision making scenarios, error rates are a starting point
for investigating this question. This yields a distinct reason why error rates carry
some moral significance. But note a finding of error rate disparity, by itself, doesn’t
suggest any particular intervention.

What to do about error rate disparity

Collecting more data and investing in improving classification technology is one
way to potentially mitigate error rate disparity. Normally, we give significant
deference to the decision maker on the tradeoff between data collection cost and
model accuracy. This deference, especially in private sector applications, is based on
the idea that the interests of the decision maker and decision subjects are generally
aligned. For example, we defer to lenders on how accurate their predictions should
be. If, instead, lenders were required to be highly accurate in their predictions,
they might only lend in the safest of cases, depriving many people of the ability
to obtain loans, or they might go to great lengths to collect data about borrowers,
raising the cost of operating the system and pushing some of that cost to the
borrowers.

The argument above only considers total welfare and not how the benefits and
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Figure 4.2: Probability density of risk scores for two groups, and a classification
threshold. Throughout the illustrations in this section, we assume that the score
is perfectly calibrated. The group shown with a solid line has a higher error rate.
Intuitively this is because the probability mass is more concentrated (i.e., the score
function is worse at distinguishing among members of this group). Collecting more
data would potentially bring the solid curve closer to the dashed curve, mitigating
the error rate disparity.

costs are distributed among people and groups. When we introduce distributional
considerations, there are many scenarios where it is justifiable to lower the def-
erence to decision makers, and the presence of error rate disparity is one such
scenario. In this case, requiring the decision maker to mitigate error rate disparity
can be seen as asking them to bear some of the cost that’s being pushed onto some
individuals and groups.

While improving the overall accuracy of the classifier may close the disparity
in some cases, in other cases it may leave the disparity unchanged or even worsen
it. Accuracy is bounded by that of the optimal classifier, and recall that the optimal
classifier doesn’t necessarily satisfy error rate parity. As a concrete example, assume
that loan defaults primarily arise due to unexpected job loss, one group of loan
applicants holds more precarious jobs that are at a greater risk of layoff, and
layoffs are not predictable at decision time. In this scenario, improvements in data
collection and classification will not yield error rate parity.

Faced with this intrinsic limitation, it may be tempting to perform an adjustment
step that achieves error rate parity, such as different risk thresholds for different
groups. One way to do this would be without making anyone worse off compared
to an unconstrained classifier. For example, a lender could use a more lenient risk
threshold for one group to lower its error rate. This would violate the narrow view
of equality of opportunity, as people from different groups with the same risk score
may be treated differently. Whether the intervention is still justified is a difficult
normative question that lacks a uniform answer.

In other situations, even this might not be possible. For example, the interven-
tion may increase the lender’s risk so much that it goes out of business.

In fact, if base rates are so different that we expect large disparities in error
rates that cannot be mitigated by interventions like data collection, then it suggests
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Figure 4.3: Probability density of risk scores for two groups, and a classification
threshold. Again the solid group has a higher error rate—specifically, a higher false
positive rate, where false positives are people incorrectly classified as high risk. But
this time it is because the solid group has a higher base rate (the curve is shifted
to the right compared to the dashed group). Collecting more data is unlikely to
mitigate the error rate disparity.

Figure 4.4: Probability density of risk scores for two groups, and two different
classification thresholds resulting in equal error rates.
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that the use of predictive decision making is itself problematic, and perhaps we
should scrap the system or apply more fundamental interventions.

In summary, error rate parity lacks a direct relationship to any single normative
principle. But it captures something about both the narrow and the middle views
of equality of opportunity. It is also a way to incentivize decision makers to invest
in fairness and to question the appropriateness of predictive decision making.

Alternatives for realizing the middle view of equality of opportunity

We’ve discussed how error rate parity bears some relationship to the middle view
of equality of opportunity. But there are many other possible interventions that
decision makers might adopt to try to realize the middle view of equality of
opportunity that do not map onto any of the criteria discussed in Chapter 3. The
middle view is an inherently fuzzy notion, leaving a lot of room to decide the
extent to which we want to discount people’s apparent differences and the manner
in which to do so. Here are a few other ways in which we can try to operationalize
it. Unsurprisingly, all of these violate the narrow view of equality of opportunity.

Decision makers could reconsider the goals that they are pursuing such that
the decision-making process that seeks to meet these goals generates less disparate
outcomes. For example, employers might choose a different target variable that is
perceived to be an equally good proxy for their goal, but whose accurate prediction
leads to a less significant disparity in outcomes for different groups.170

They might explore whether it is possible to train alternative models with a
similar degree of accuracy as their original model, but which produces smaller
disparities in the rates at which members of different groups achieve the desired
outcome or are subject to erroneous assessment.171 Empirically, this appears to be
possible in many cases, including for particularly high-stakes decision making.172

They might sacrifice a good deal of apparent accuracy on the belief that there
is serious measurement error and that people from some groups are actually
far more qualified than they might appear (we assume that it is not possible
to explicitly correct the measurement error and that group membership is not
sufficiently redundantly encoded in the features, preventing the optimal classifier
from automatically accounting for measurement error).173

Finally, they could forgo some of the benefits they might have achieved under
the original decision-making process so as to provide important benefits to the
groups that have been subject to past mistreatment. To do so, they might treat
members of certain groups counterfactually, as if they hadn’t experienced the
injustice that makes them less qualified by the time of decision-making.

Summary

Fairness is most often conceptualized as equality of opportunity. But in this chapter,
we’ve seen that there are a variety of ways to understand equality of opportunity.
The differences among them are at the heart of why fairness is such a contested
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topic. All three views can be seen in contemporary political debates. The narrow
view aligns with what is often meant by the term meritocracy. The middle view
drives Diversity, Equity, and Inclusion (DEI) efforts at many workplaces. The broad
view is too sweeping to find much support for a full-throated implementation, but
the ideas behind it come up in debates around topics such as reparations.174

The views differ along many axes, including what they seek to achieve; how
they understand the causes of current differences between groups (and whether
they seek to understand them at all); and how to distribute the cost of uplifting
historically disadvantaged groups.

Table 4.2: Views of equality of opportunity and their formal
relatives

Goal Related formal criteria

Narrow
view

Ensure that people who are similarly
qualified for an opportunity have
similar chances of obtaining it

Similarity criterion,
meritocratic fairness,
calibration by group

Middle
view

Discount differences due to past
injustice that accounts for current
differences in qualifications

Similarity criterion,
Roemer’s formal equality
of opportunity, error rate
parity

Broad
view

Ensure people of equal ability and
ambition are able to realize their
potential equally well

Demographic parity

In the latter part of the chapter, we attempted to connect these moral notions
to the statistical criteria from Chapter 3. Loose connections emerged through this
exercise, but, ultimately, none of the statistical criteria are strongly anchored in
normative foundations.

But even these rough similarities illustrate one important point about the
impossibility results from Chapter 3. The impossibility results aren’t some kind of
artifact of statistical decision making; they simply reveal moral dilemmas. Once
we recognize the underlying moral difficulties, these mathematical tensions seem
much less surprising.

For example, an approach that makes accurate predictions based on people’s
currently observable attributes, and then makes decisions based on those predic-
tions (calibration) won’t result in equality of outcomes (independence) as long as
different groups have different qualifications on average. Similarly, its results also
differ from an approach that is willing to treat seemingly similar people differently
in order to attempt to equalize the burden on different groups (error rate parity).
The approaches also differ in the extent to which measurement errors are seen as
the responsibility of the decision maker, and who should bear the costs of fairness
interventions.

One reason the normative foundations of statistical fairness criteria are shaky
is that conditional independence doesn’t give us a vocabulary to reason about
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the causes of disparities between groups or the effects of interventions. We will
attempt to address these limitations in the next chapter.
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5
Causality

Our starting point is the difference between an observation and an action. What
we see in passive observation is how individuals follow their routine behavior,
habits, and natural inclination. Passive observation reflects the state of the world
projected to a set of features we chose to highlight. Data that we collect from
passive observation show a snapshot of our world as it is.

There are many questions we can answer from passive observation alone:
Do 16 year-old drivers have a higher incidence rate of traffic accidents than 18

year-old drivers? Formally, the answer corresponds to a difference of conditional
probabilities assuming we model the population as a distribution as we did in the
last chapter. We can calculate the conditional probability of a traffic accident given
that the driver’s age is 16 years and subtract from it the conditional probability of
a traffic accident given the age is 18 years. Both conditional probabilities can be
estimated from a large enough sample drawn from the distribution, assuming that
there are both 16 year old and 18 year old drivers. The answer to the question we
asked is solidly in the realm of observational statistics.

But important questions often are not observational in nature. Would traffic
fatalities decrease if we raised the legal driving age by two years? Although
the question seems similar on the surface, we quickly realize that it asks for a
fundamentally different insight. Rather than asking for the frequency of an event
in our manifested world, this question asks for the effect of a hypothetical action.

As a result, the answer is not so simple. Even if older drivers have a lower
incidence rate of traffic accidents, this might simply be a consequence of additional
driving experience. There is no obvious reason why an 18 year old with two months
on the road would be any less likely to be involved in an accident than, say, a 16

year-old with the same experience. We can try to address this problem by holding
the number of months of driving experience fixed, while comparing individuals
of different ages. But we quickly run into subtleties. What if 18 year-olds with
two months of driving experience correspond to individuals who are exceptionally
cautious and hence—by their natural inclination—not only drive less, but also
more cautiously? What if such individuals predominantly live in regions where
traffic conditions differ significantly from those in areas where people feel a greater
need to drive at a younger age?

We can think of numerous other strategies to answer the original question of
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whether raising the legal driving age reduces traffic accidents. We could compare
countries with different legal driving ages, say, the United States and Germany.
But again, these countries differ in many other possibly relevant ways, such as, the
legal drinking age.

At the outset, causal reasoning is a conceptual and technical framework for
addressing questions about the effect of hypothetical actions or interventions. Once
we understand what the effect of an action is, we can turn the question around and
ask what action plausibly caused an event. This gives us a formal language to talk
about cause and effect.

Not every question about cause is equally easy to address. Some questions are
overly broad, such as, “What is the cause of success?” Other questions are too
specific: “What caused your interest in 19th century German philosophy?” Neither
question might have a clear answer. Causal inference gives us a formal language to
ask these questions, in principle, but it does not make it easy to choose the right
questions. Nor does it trivialize the task of finding and interpreting the answer to
a question. Especially in the context of fairness, the difficulty is often in deciding
what the question is that causal inference is the answer to.

In this chapter, we will develop sufficient technical understanding of causality to
support at least three different purposes. The first is to conceptualize and address
some limitations of the observational techniques we saw in Chapter 3. The second
is to provide tools that help in the design of interventions that reliably achieve a
desired effect. The third is to engage with the important normative debate about
when and to which extent reasoning about discrimination and fairness requires
causal understanding.

The limitations of observation

Before we develop any new formalism, it is important to understand why we need
it in the first place. To see why we turn to the venerable example of graduate
admissions at the University of California, Berkeley in 1973.175 Historical data show
that 12763 applicants were considered for admission to one of 101 departments and
inter-departmental majors. Of the 4321 women who applied roughly 35 percent
were admitted, while 44 percent of the 8442 men who applied were admitted.
Standard statistical significance tests suggest that the observed difference would be
highly unlikely to be the outcome of sample fluctuation if there were no difference
in underlying acceptance rates.

A similar pattern exists if we look at the aggregate admission decisions of the
six largest departments. The acceptance rate across all six departments for men is
about 44%, while it is only roughly 30% for women, again, a significant difference.
Recognizing that departments have autonomy over who to admit, we can look at
the gender bias of each department.
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Table 5.1: UC Berkeley admissions data from 1973.

Men Women

Department Applied Admitted (%) Applied Admitted (%)
A 825 62 108 82
B 520 60 25 68
C 325 37 593 34

D 417 33 375 35
E 191 28 393 24

F 373 6 341 7

What we can see from the table is that four of the six largest departments show
a higher acceptance ratio among women, while two show a higher acceptance rate
for men. However, these two departments cannot account for the large difference
in acceptance rates that we observed in aggregate. So, it appears that the higher
acceptance rate for men that we observed in aggregate seems to have reversed at
the department level.

Such reversals are sometimes called Simpson’s paradox, even though mathemati-
cally they are no surprise. It’s a fact of conditional probability that there can be an
event Y (here, acceptance), an attribute A (here, female gender taken to be a binary
variable) and a random variable Z (here, department choice) such that:

1. P{Y | A} < P{Y | ¬A}
2. P{Y | A, Z = z} > P{Y | ¬A, Z = z} for all values z that the random

variable Z assumes.

Simpson’s paradox nonetheless causes discomfort to some, because intuition
suggests that a trend which holds for all subpopulations should also hold at the
population level.

The reason why Simpson’s paradox is relevant to our discussion is that it’s
a consequence of how we tend to misinterpret what information conditional
probabilities encode. Recall that a statement of conditional probability corresponds
to passive observation. What we see here is a snapshot of the normal behavior of
women and men applying to graduate school at UC Berkeley in 1973.

What is evident from the data is that gender influences department choice.
Women and men appear to have different preferences for different fields of study.
Moreover, different departments have different admission criteria. Some have lower
acceptance rates, some higher. Therefore, one explanation for the data we see is
that women chose to apply to more competitive departments, hence getting rejected
at a higher rate than men.

Indeed, this is the conclusion the original study drew:

The bias in the aggregated data stems not from any pattern of discrimination
on the part of admissions committees, which seems quite fair on the whole,
but apparently from prior screening at earlier levels of the educational system.
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Women are shunted by their socialization and education toward fields of
graduate study that are generally more crowded, less productive of completed
degrees, and less well funded, and that frequently offer poorer professional
employment prospects.175

In other words, the article concluded that the source of gender bias in admis-
sions was a pipeline problem: Without wrongdoing by the admissions committee,
women were “shunted by their socialization” that happened at an earlier stage in
their lives.

It is difficult to debate this conclusion on the basis of the available data alone.
The question of discrimination, however, is far from resolved. We can ask why
women applied to more competitive departments in the first place. There are
several possible reasons. Perhaps less competitive departments, such as engineering
schools, were unwelcoming of women at the time. This may have been a general
pattern at the time or specific to the university. Perhaps some departments had a
track record of poor treatment of women that was known to the applicants. Perhaps
the department advertised the program in a manner that discouraged women from
applying.

The data we have also shows no measurement of qualification of an applicant.
It’s possible that due to self-selection women applying to engineering schools in
1973 were over-qualified relative to their peers. In this case, an equal acceptance
rate between men and women might actually be a sign of discrimination.

There is no way of knowing what was the case from the data we have. There are
multiple possible scenarios with different interpretations and consequences that
we cannot distinguish from the data at hand. At this point, we have two choices.
One is to design a new study and collect more data in a manner that might lead
to a more conclusive outcome. The other is to argue over which scenario is more
likely based on our beliefs and plausible assumptions about the world. Causal
inference is helpful in either case. On the one hand, it can be used as a guide in
the design of new studies. It can help us choose which variables to include, which
to exclude, and which to hold constant. On the other hand, causal models can
serve as a mechanism to incorporate scientific domain knowledge and exchange
plausible assumptions for plausible conclusions.

Causal models

We will develop just enough formal concepts to engage with the technical and
normative debate around causality and discrimination. The topic is much deeper
than what we can explore in this chapter.

We choose structural causal models as the basis of our formal discussion as they
have the advantage of giving a sound foundation for various causal notions we
will encounter. The easiest way to conceptualize a structural causal model is as a
program for generating a distribution from independent noise variables through a
sequence of formal instructions. Let’s unpack this statement. Imagine instead of
samples from a distribution, somebody gave you a step-by-step computer program
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to generate samples on your own starting from a random seed. The process is not
unlike how you would write code. You start from a simple random seed and build
up increasingly more complex constructs. That is basically what a structural causal
model is, except that each assignment uses the language of mathematics rather
than any concrete programming syntax.

A first example

Let’s start with a toy example not intended to capture the real world. Imagine a
hypothetical population in which an individual exercises regularly with probabil-
ity 1/2. With probability 1/3, the individual has a latent disposition to develop
overweight that manifests in the absence of regular exercise. Similarly, in the
absence of exercise, heart disease occurs with probability 1/3. Denote by X the
indicator variable of regular exercise, by W that of excessive weight, and by H the
indicator of heart disease. Below is a structural causal model to generate samples
from this hypothetical population. To ease the description, we let B(p) denote a
Bernoulli random variable with bias p, i.e., a biased coin toss that assumes value 1
with probability p and value 0 with probability 1− p.

1. Sample independent Bernoulli random variables U1 ∼ B(1/2), U2 ∼
B(1/3), U3 ∼ B(1/3).

2. X := U1
3. W := if X = 1 then 0 else U2
4. H := if X = 1 then 0 else U3

Contrast this generative description of the population with a random sample
drawn from the population. From the program description, we can immediately
see that in our hypothetical population exercise averts both overweight and heart
disease, but in the absence of exercise the two are independent. At the outset, our
program generates a joint distribution over the random variables (X, W, H). We
can calculate probabilities under this distribution. For example, the probability of
heart disease under the distribution specified by our model is 1/2 · 1/3 = 1/6. We
can also calculate the conditional probability of heart diseases given overweight.
From the event W = 1 we can infer that the individual does not exercise so that
the probability of heart disease given overweight increases to 1/3 compared with
the baseline of 1/6.

Does this mean that overweight causes heart disease in our model? The answer
is no as is intuitive given the program to generate the distribution. But let’s see
how we would go about arguing this point formally. Having a program to generate
a distribution is substantially more powerful than just having sampling access.
One reason is that we can manipulate the program in whichever way we want,
assuming we still end up with a valid program. We could, for example, set W := 1,
resulting in a new distribution. The resulting program looks like this:

2. X := U1
3. W := 1
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4. H := if X = 1 then 0 else U3

This new program specifies a new distribution. We can again calculate the
probability of heart disease under this new distribution. We still get 1/6. This
simple calculation reveals a significant insight. The substitution W := 1 does not
correspond to a conditioning on W = 1. One is an action, albeit inconsequential in
this case. The other is an observation from which we can draw inferences. If we
observe that an individual is overweight, we can infer that they have a higher risk
of heart disease (in our toy example). However, this does not mean that lowering
body weight would avoid heart disease. It wouldn’t in our example. The active
substitution W := 1 in contrast creates a new hypothetical population in which all
individuals are overweight with all that it entails in our model.

Let us belabor this point a bit more by considering another hypothetical popu-
lation, specified by the equations:

2. W := U2
3. X := if W = 0 then 0 else U1
4. H := if X = 1 then 0 else U3

In this population exercise habits are driven by body weight. Overweight
individuals choose to exercise with some probability, but that’s the only reason
anyone would exercise. Heart disease develops in the absence of exercise. The
substitution W := 1 in this model leads to an increased probability of exercise,
hence lowering the probability of heart disease. In this case, the conditioning
on W = 1 has the same affect. Both lead to a probability of 1/6.

What we see is that fixing a variable by substitution may or may not correspond
to a conditional probability. This is a formal rendering of our earlier point that
observation isn’t action. A substitution corresponds to an action we perform. By
substituting a value we break the natural course of action our model captures. This
is the reason why the substitution operation is sometimes called the do-operator,
written as do(W := 1).

Structural causal models give us a formal calculus to reason about the effect of
hypothetical actions. We will see how this creates a formal basis for all the different
causal notions that we will encounter in this chapter.

Structural causal models, more formally

Formally, a structural causal model is a sequence of assignments for generating
a joint distribution starting from independent noise variables. By executing the
sequence of assignments we incrementally build a set of jointly distributed random
variables. A structural causal model therefore not only provides a joint distribu-
tion, but also a description of how the joint distribution can be generated from
elementary noise variables. The formal definition is a bit cumbersome compared
with the intuitive notion.
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Definition 4. A structural causal model M is given by a set of variables X1, ..., Xd and
corresponding assignments of the form

Xi := fi(Pi, Ui), i = 1, ..., d .

Here, Pi ⊆ {X1, ..., Xd} is a subset of the variables that we call the parents of Xi. The
random variables U1, ..., Ud are called noise variables, which we require to be jointly
independent. The causal graph corresponding to the structural causal model is the directed
graph that has one node for each variable Xi with incoming edges from all the parents Pi.

Let’s walk through the formal concepts introduced in this definition in a bit
more detail. The noise variables that appear in the definition model exogenous
factors that influence the system. Consider, for example, how the weather influences
the delay on a traffic route you choose. Due to the difficulty of modeling the
influence of weather more precisely, we could take the weather induced delay to
be an exogenous factor that enters the model as a noise variable. The choice of
exogenous variables and their distribution can have important consequences for
what conclusions we draw from a model.

The parent nodes Pi of node i in a structural causal model are often called
the direct causes of Xi. Similarly, we call Xi the direct effect of its direct causes Pi.
Recall our hypothetical population in which weight gain was determined by lack of
exercise via the assignment W := min{U1, 1− X}. Here we would say that exercise
(or lack thereof) is a direct cause of weight gain.

Structural causal model are a collection of formal assumptions about how certain
variables interact. Each assignment specifies a response function. We can think
of nodes as receiving messages from their parents and acting according to these
messages as well as the influence of an exogenous noise variable.

To which extent a structural causal model conforms to reality is a separate and
difficult question that we will return to in more detail later. For now, think of a
structural causal model as formalizing and exposing a set of assumptions about a
data generating process. As such different models can expose different hypothetical
scenarios and serve as a basis for discussion. When we make statements about
cause and effect in reference to a model, we don’t mean to suggest that these
relationship necessarily hold in the real world. Whether they do depends on the
scope, purpose, and validity of our model, which may be difficult to substantiate.

It’s not hard to show that a structural causal model defines a unique joint
distribution over the variables (X1, ..., Xd) such that Xi = fi(Pi, Ui). It’s convenient
to introduce a notion for probabilities under this distribution. When M denotes
a structural causal model, we will write the probability of an event E under the
entailed joint distribution as PM{E}. To gain familiarity with the notation, let M
denote the structural causal model for the hypothetical population in which both
weight gain and heart disease are directly caused by an absence of exercise. We
calculated earlier that the probability of heart disease in this model is PM{H} =
1/6.

In what follows we will derive from this single definition of a structural causal
model all the different notions and terminology that we’ll need in this chapter.
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Figure 5.1: Causal diagrams for the heart disease examples.

Throughout, we restrict our attention to acyclic assignments. Many real-world
systems are naturally described as stateful dynamical system with closed feedback
loops. There are some ways of dealing with such closed loop systems. For example,
often cycles can be broken up by introducing time dependent variables, such as,
investments at time 0 grow the economy at time 1 which in turn grows investments
at time 2, continuing so forth until some chosen time horizon t. This processing is
called unrolling a dynamical system.

Causal graphs

We saw how structural causal models naturally give rise to causal graphs that
represent the assignment structure of the model graphically. We can go the
other way as well by simply looking at directed graphs as placeholders for an
unspecified structural causal model which has the assignment structure given by
the graph. Causal graphs are often called causal diagrams. We’ll use these terms
interchangeably.

The causal graphs for the two hypothetical populations from our heart disease
example each have two edges and the same three nodes. They agree on the link
between exercise and heart disease, but they differ in the direction of the link
between exercise and weight gain.

Causal graphs are convenient when the exact assignments in a structural causal
models are of secondary importance, but what matters are the paths present and
absent in the graph. Graphs also let us import the established language of graph
theory to discuss causal notions. We can say, for example, that an indirect cause of
a node is any ancestor of the node in a given causal graph. In particular, causal
graphs allow us to distinguish cause and effect based on whether a node is an
ancestor or descendant of another node.

Let’s take a first glimpse at a few important graph structures.

Forks

A fork is a node Z in a graph that has outgoing edges to two other variables X
and Y. Put differently, the node Z is a common cause of X and Y. We already saw
an example of a fork in our weight and exercise example: W ← X → H. Here,
exercise X influences both weight and heart disease. We also learned from the
example that Z has a confounding effect: Ignoring exercise X, we saw that W and H
appear to be positively correlated. However, the correlation is a mere result of
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Figure 5.2: Example of a fork (confounder).

Figure 5.3: Example of a chain (mediator).

confounding. Once we hold exercise levels constant (via the do-operation), weight
has no effect on heart disease in our example.

Confounding leads to a disagreement between the calculus of conditional
probabilities (observation) and do-interventions (actions). Real-world examples
of confounding are a common threat to the validity of conclusions drawn from
data. For example, in a well known medical study a suspected beneficial effect of
hormone replacement therapy in reducing cardiovascular disease disappeared after
identifying socioeconomic status as a confounding variable.176

Mediators

The case of a fork is quite different from the situation where Z lies on a directed
path from X to Y. In this case, the path X → Z → Y contributes to the total
effect of X on Y. It’s a causal path and thus one of the ways in which X causally
influences Y. That’s why Z is not a confounder. We call Z a mediator instead.

We saw a plausible example of a mediator in our UC Berkeley admissions
example. In one plausible causal graph, department choice mediates the influences
of gender on the admissions decision. The notion of a mediator is particularly
relevant to the topic of discrimination analysis, since mediators can be interpreted
as the mechanism behind a causal link.

Colliders

Finally, let’s consider another common situation: the case of a collider. Collid-
ers aren’t confounders. In fact, in the above graph, X and Y are unconfounded,
meaning that we can replace do-statements by conditional probabilities. However,
something interesting happens when we condition on a collider. The conditioning
step can create correlation between X and Y, a phenomenon called explaining away.
A good example of the explaining away effect, or collider bias, is due to Berkson.
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Figure 5.4: Example of a collider.

Two independent diseases can become negatively correlated when analyzing hos-
pitalized patients. The reason is that when either disease (X or Y) is sufficient for
admission to the hospital (indicated by variable Z), observing that a patient has
one disease makes the other statistically less likely.177

Berkson’s law is a cautionary tale for statistical analysis when we’re studying
a cohort that has been subjected to a selection rule. For example, there’s an
ongoing debate about the effectiveness of GRE scores in higher education. Some
studies178, 179 argue that GRE scores are not predictive of various success outcomes
in a graduate student population. However, care must be taken when studying
the effectiveness of educational tests, such as the GRE, by examining a sample of
admitted students. After all, students were in part admitted on the basis of the test
score. It’s the selection rule that introduces the potential for collider bias.

Interventions and causal effects

Structural causal models give us a way to formalize the effect of hypothetical
actions or interventions on the population within the assumptions of our model.
As we saw earlier all we needed was the ability to do substitutions.

Substitutions and the do-operator

Given a structural causal model M we can take any assignment of the form

X := f (P, U)

and replace it by another assignment. The most common substitution is to
assign X a constant value x:

X := x

We will denote the resulting model by M′ = M[X := x] to indicate the surgery
we performed on the original model M. Under this assignment we hold X constant
by removing the influence of its parent nodes and thereby any other variables in
the model.

Graphically, the operation corresponds to eliminating all incoming edges to the
node X. The children of X in the graph now receive a fixed message x from X
when they query the node’s value. The assignment operator is also called the
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Figure 5.5: Graph before and after substitution.

do-operator to emphasize that it corresponds to performing an action or intervention.
We already have notation to compute probabilities after applying the do-operator,
namely, PM[X:=x](E). Another notation is popular and common:

P{E | do(X := x)} = PM[X:=x](E)

This notation analogizes the do-operation with the usual notation for condi-
tional probabilities, and is often convenient when doing calculations involving the
do-operator. Keep in mind, however, that the do-operator (action) is fundamentally
different from the conditioning operator (observation).

Causal effects

The causal effect of an action X := x on a variable Y refers to the distribution of
the variable Y in the model M[X := x]. When we speak of the causal effect of a
variable X on another variable Y we refer to all the ways in which setting X to any
possible value x affects the distribution of Y.

Often we think of X as a binary treatment variable and are interested in a
quantity such as

EM[X:=1][Y]−EM[X:=0][Y] .

This quantity is called the average treatment effect. It tells us how much treatment
(action X := 1) increases the expectation of Y relative to no treatment (action X :=
0). Causal effects are population quantities. They refer to effects averaged over the
whole population. Often the effect of treatment varies greatly from one individual
or group of individuals to another. Such treatment effects are called heterogeneous.

Confounding

Important questions in causality relate to when we can rewrite a do-operation
in terms of conditional probabilities. When this is possible, we can estimate the
effect of the do-operation from conventional conditional probabilities that we can
estimate from data.

The simplest question of this kind asks when a causal effect P{Y = y | do(X :=
x)} coincides with the condition probability P{Y = y | X = x}. In general, this is
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not true. After all, the difference between observation (conditional probability) and
action (interventional calculus) is what motivated the development of causality.

The disagreement between interventional statements and conditional statements
is so important that it has a well-known name: confounding. We say that X and Y
are confounded when the causal effect of action X := x on Y does not coincide
with the corresponding conditional probability.

When X and Y are confounded, we can ask if there is some combination of con-
ditional probability statements that give us the desired effect of a do-intervention.
This is generally possible given a causal graph by conditioning on the parent
nodes PA of the node X:

P{Y = y | do(X := x)} = ∑
z

P{Y = y | X = x, PA = z}P{PA = z}

This formula is called the adjustment formula. It gives us one way of estimating the
effect of a do-intervention in terms of conditional probabilities.

The adjustment formula is one example of what is often called controlling for
a set of variables: We estimate the effect of X on Y separately in every slice of
the population defined by a condition Z = z for every possible value of z. We
then average these estimated sub-population effects weighted by the probability
of Z = z in the population. To give an example, when we control for age, we mean
that we estimate an effect separately in each possible age group and then average
out the results so that each age group is weighted by the fraction of the population
that falls into the age group.

Controlling for more variables in a study isn’t always the right choice. It
depends on the graph structure. Let’s consider what happens when we control for
the variable Z in the three causal graphs we discussed above.

• Controlling for a confounding variable Z in a fork X ← Z → Y will decon-
found the effect of X on Y.

• Controlling for a mediator Z on a chain X → Z → Y will eliminate some of
the causal influence of X on Y.

• Controlling for a collider will create correlation between X and Y. That is the
opposite of what controlling for Z accomplishes in the case of a fork. The
same is true if we control for a descendant of a collider.

The backdoor criterion

At this point, we might worry that things get increasingly complicated. As we
introduce more nodes in our graph, we might fear a combinatorial explosion of
possible scenarios to discuss. Fortunately, there are simple sufficient criteria for
choosing a set of deconfounding variables that is safe to control for.

A well known graph-theoretic notion is the backdoor criterion.180 Two variables
are confounded if there is a so-called backdoor path between them. A backdoor path
from X to Y is any path starting at X with a backward edge “←” into X such as:

X ← A→ B← C → Y
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Figure 5.6: Two cases of unobserved confounding.

Intuitively, backdoor paths allow information flow from X to Y in a way that is
not causal. To deconfound a pair of variables we need to select a backdoor set of
variables that “blocks” all backdoor paths between the two nodes. A backdoor path
involving a chain A→ B→ C can be blocked by controlling for B. Information by
default cannot flow through a collider A→ B← C. So we only have to be careful
not to open information flow through a collider by conditioning on the collider, or
descendant of a collider.

Unobserved confounding

The adjustment formula might suggest that we can always eliminate confounding
bias by conditioning on the parent nodes. However, this is only true in the absence
of unobserved confounding. In practice often there are variables that are hard to
measure, or were simply left unrecorded. We can still include such unobserved
nodes in a graph, typically denoting their influence with dashed lines, instead of
solid lines.

The above figure shows two cases of unobserved confounding. In the first
example, the causal effect of X on Y is unidentifiable. In the second case, we can
block the confounding backdoor path X ← Z →W → Y by controlling for W even
though Z is not observed. The backdoor criterion lets us work around unobserved
confounders in some cases where the adjustment formula alone wouldn’t suffice.

Unobserved confounding nonetheless remains a major obstacle in practice. The
issue is not just lack of measurement, but often lack of anticipation or awareness
of a counfounding variable. We can try to combat unobserved confounding by
increasing the number of variables under consideration. But as we introduce more
variables into our study, we also increase the burden of coming up with a valid
causal model for all variables under consideration. In practice, it is not uncommon
to control for as many variables as possible in a hope to disable confounding bias.
However, as we saw, controlling for mediators or colliders can be harmful.

Randomization

The backdoor criterion gives a non-experimental way of eliminating confounding
bias given a causal model and a sufficient amount of observational data from
the joint distribution of the variables. An alternative experimental method of
eliminating confounding bias is the well-known randomized controlled trial.

In a randomized controlled trial a group of subjects is randomly partitioned into
a control group and a treatment group. Participants do not know which group they
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were assigned to and neither do the staff administering the trial. The treatment
group receives an actual treatment, such as a drug that is being tested for efficacy,
while the control group receives a placebo identical in appearance. An outcome
variable is measured for all subjects.

The goal of a randomized controlled trial is to break natural inclination. Rather
than observing who chose to be treated on their own, we assign treatment randomly.
Thinking in terms of causal models, what this means is that we eliminate all
incoming edges into the treatment variable. In particular, this closes all backdoor
paths and hence avoids confounding bias.

There are many reasons why often randomized controlled trials are difficult or
impossible to administer. Treatment might be physically or legally impossible, too
costly, or too dangerous. As we saw, randomized controlled trials are not always
necessary for avoiding confounding bias and for reasoning about cause and effect.
Nor are they free of issues and pitfalls.181

Graphical discrimination analysis

We now explore how we can bring causal graphs to bear on discussions of discrim-
ination. We return to the example of graduate admissions at Berkeley and develop
a causal perspective on the earlier analysis.

The first step is to come up with a plausible causal graph consistent with the
data that we saw earlier. The data contained only three variables, sex A, department
choice Z, and admission decision Y. It makes sense to draw two arrows A → Y
and Z → Y, because both features A and Z are available to the institution when
making the admissions decision. We’ll draw one more arrow, for now, simply
because we have to. If we only included the two arrows A → Y and Z → Y, our
graph would claim that A and Z are statistically independent. However, this claim
is inconsistent with the data. We can see from the table that several departments
have a statistically significant gender bias among applicants. This means we need
to include either the arrow A→ Z or Z → A. Deciding between the two isn’t as
straightforward as it might first appear.

If we interpreted A in the narrowest possible sense as the applicant’s reported
sex, i.e., literally which box they checked on the application form, we could imagine
a scenario where some applicants choose to (mis-)report their sex in a certain
way that depends in part on their department choice. Even if we assume no
misreporting occurs, it’s hard to substantiate reported sex as a plausible cause of
department choice. The fact that an applicant checked a box labeled male certainly
isn’t the cause for their interest in engineering.

The proposed causal story in the study is a different one. It alludes to a
socialization and preference formation process that took place in the applicant’s life
before they applied which. It is this process that, at least in part, depended on the
applicant’s sex. To align this story with our causal graph, we need the variable A to
reference whatever ontological entity it is that through this “socialization process”
influences intellectual and professional preferences, and hence, department choice.
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Figure 5.7: Possible causal graph for the UC Berkeley graduate admissions scenario.

It is difficult to maintain that this ontological entity coincides with sex as a biological
trait. There is no scientific basis to support that the biological trait sex is what
determines our intellectual preferences. Few scholars (if any) would currently
attempt to maintain a claim such as two X chromosomes cause an interest in English
literature.

The truth is that we don’t know the exact mechanism by which the thing
referenced by A influences department choice. In drawing the arrow A to Z
we assert—perhaps with some naivety or ignorance—that there exists such a
mechanism. We will discuss the important difficulty we encountered here in depth
later on. For now, we commit to this modeling choice and thus arrive at the
following graph.

In this graph, department choice mediates the influence of gender on admis-
sions. There’s a direct path from A to Y and an indirect path that goes through Z.
We will use this model to put pressure on the claim that there is no evidence of sex
discrimination. In causal language, the argument had two components:

1. There appears to be no direct effect of sex A on the admissions decision Y
that favors men.

2. The indirect effect of A on Y that is mediated by department choice should
not be counted as evidence of discrimination.

We will discuss both arguments in turn.

Direct effects

To obtain the direct effect of A on Y we need to disable all paths between A
and Y except for the direct link. In our model, we can accomplish this by holding
department choice Z constant and evaluating the conditional distribution of Y
given A. Recall that holding a variable constant is generally not the same as
conditioning on the variable. Specifically, a problem would arise if department
choice and admissions outcome were confounded by another variable, such as,
state of residence R

Department choice is now a collider between A and R. Conditioning on a
collider opens the backdoor path A→ Z ← R→ Y. In this graph, conditioning on
department choice does not give us the desired direct effect. The real possibility
that state of residence confounds department choice and decision was the subject
of an exchange between Bickel and Kruskal.182
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Figure 5.8: Alternative causal graph for the UC Berkeley graduate admissions
scenario showing influence of residence.

If we assume, however, that department choice and admissions decisions are
unconfounded, then the approach Bickel, Hammel, and O’Connell took indeed
supports the first claim. Unfortunately, the direct effect of a protected variable on a
decision is a poor measure of discrimination on its own. At a technical level, it is
rather brittle as it cannot detect any form of proxy discrimination. The department
could, for example, use the applicant’s personal statement to make inferences about
their gender, which are then used to discriminate.

We can think of the direct effect as corresponding to the explicit use of the
attribute in the decision rule. The absence of a direct effect loosely corresponds
to the somewhat troubled notion of a blind decision rule that doesn’t have explicit
access to the sensitive attribute. As we argued in preceding chapters, blind decision
rules can still be the basis of discriminatory practices.

Indirect paths

Let’s turn to the indirect effect of sex on admission that goes through department
choice. It’s tempting to think of the the node Z as referencing the applicant’s
inherent department preferences. In this view, the department is not responsible
for the applicant’s preferences. Therefore the mediating influence of department
preferences is not interpreted as a sign of discrimination. This, however, is a
substantive judgment that may not be a fact. There are other plausible scenarios
consistent with both the data and our causal model, in which the indirect path
encodes a pattern of discrimination.

For example, the admissions committee may have advertised the program in a
manner that strongly discouraged women from applying. In this case, department
preference in part measures exposure to this hostile advertising campaign. Alterna-
tively, the department could have a track record of hostile behavior against women
and it is awareness of such that shapes preferences in an applicant. Finally, even
blatant discriminatory practices, such as compensating women at a lower rate than
equally qualified male graduate students, correspond to an indirect effect mediated
by department choice.

Accepting the indirect path as non-discriminatory is to assert that all these scenar-
ios we described are deemed implausible. Fundamentally, we are confronted with
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Figure 5.9: Alternative causal graph for the UC Berkeley graduate admissions
scenario where department preferences are shaped by fear of discrimination.

a substantive question. The path A→ Z → Y could either be where discrimination
occurs or what explains the absence thereof. Which case we’re in isn’t a purely
technical matter and cannot be resolved without subject matter knowledge. Causal
modeling gives us a framework for exposing these questions, but not necessarily
one to resolve them.

Path inspection

To summarize, discrimination may not only occur on the direct pathway from the
sensitive category to the outcome. Seemingly innocuous mediating paths can hide
discriminatory practices. We have to carefully discuss what pathways we consider
evidence for or against discrimination.

To appreciate this point, contrast our Berkeley scenario with the important legal
case Griggs v. Duke Power Co. that was argued before the U.S. Supreme Court in
1970. Duke Power Company had introduced the requirement of a high school
diploma for certain higher paying jobs. We could draw a causal graph for this
scenario not unlike the one for the Berkeley case. There’s a mediating variable
(here, level of education), a sensitive category (here, race) and an employment
outcome (here, employment in a higher paying job). The company didn’t directly
make employment decisions based on race, but rather used the mediating variable.
The court ruled that the requirement of a high school diploma was not justified by
business necessity, but rather had adverse impact on ethnic minority groups where
the prevalence of high school diplomas is lower. Put differently, the court decided
that the use of this mediating variable was not an argument against, but rather for
discrimination.

Glymour183 makes another related and important point about the moral charac-
ter of mediation analysis:

Implicitly, the question of what mediates observed social effects informs
our view of which types of inequalities are socially acceptable and which
types require remediation by social policies. For example, a conclusion
that women are “biologically programmed” to be depressed more
than men may ameliorate the social obligation to try to reduce gender
inequalities in depression. Yet if people get depressed whenever they
are, say, sexually harassed—and women are more frequently sexually
harassed than men—this suggests a very strong social obligation to

120



reduce the depression disparity by reducing the sexual harassment
disparity.

Ending on a technical note, we currently do not have a method to estimate
indirect effects. Estimating an indirect effect somehow requires us to disable the
direct influence. There is no way of doing this with the do-operation that we’ve
seen so far. However, we will shortly introduce counterfactuals, which among other
applications will give us a way of estimating path-specific effects.

Structural discrimination

There’s an additional problem we neglected so far. Imagine a spiteful university
administration that systematically defunds graduate programs that attract more
female applicants. This structural pattern of discrimination is invisible from the
causal model we drew. There is a kind of type mismatch here. Our model talks
about individual applicants, their department preferences, and their outcomes. Put
differently, individuals are the units of our investigation. University policy is not
one of the mechanisms that our model exposes. We cannot featurize university
policy to make it an attribute of the individual. As a result we cannot talk about
university policy as a cause of discrimination in our model.

The model we chose commits us to an individualistic perspective that frames
discrimination as the consequence of how decision makers respond to information
about individuals. An analogy is helpful. In epidemiology, scientists can seek the
cause of health outcomes in biomedical aspects and lifestyle choices of individuals,
such as whether or not an individual smokes, exercises, maintains a balanced diet
etc. The growing field of social epidemiology criticizes the view of individual
choices as causes of health outcomes, and instead draws attention to social and
structural causes,184 such as poverty and inequality.

Similarly, we can contrast the individualistic perspective on discrimination with
structural discrimination. Causal modeling can in principle be used to study the
causes of structural discrimination, as well. But it requires a different perspective
than the one we chose for our Berkeley scenario.

Counterfactuals

Fully specified structural causal models allow us to ask causal questions that are
more delicate than the mere effect of an action. Specifically, we can ask counterfactual
questions such as: Would I have avoided the traffic jam had I taken a different route
this morning? Counterfactual questions are common and relevant for questions of
discrimination. We can computer the answer to counterfactual questions given a
structural causal model. The procedure for extracting the answer from the model
looks a bit subtle at first. We’ll walk through the formal details starting from a
simple example before returning to our discussion of discrimination.
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Figure 5.10: Causal diagram for our traffic scenario.

A simple counterfactual

To understand counterfactuals, we first need to convince ourselves that they aren’t
quite as straightforward as a single substitution in our model.

Assume every morning we need to decide between two routes X = 0 and
X = 1. On bad traffic days, indicated by U = 1, both routes are bad. On good days,
indicated by U = 0, the traffic on either route is good unless there was an accident
on the route. Let’s say that U ∼ B(1/2) follows the distribution of an unbiased
coin toss. Accidents occur independently on either route with probability 1/2.
So, choose two Bernoulli random variables U0, U1 ∼ B(1/2) that tell us if there
is an accident on route 0 and route 1, respectively. We reject all external route
guidance and instead decide on which route to take uniformly at random. That
is, X := UX ∼ B(1/2) is also an unbiased coin toss.

Introduce a variable Y ∈ {0, 1} that tells us whether the traffic on the chosen
route is good (Y = 0) or bad (Y = 1). Reflecting our discussion above, we can
express Y as

Y := X ·max{U, U1}+ (1− X)max{U, U0} .

In words, when X = 0 the first term disappears and so traffic is determined by
the larger of the two values U and U0. Similarly, when X = 1 traffic is determined
by the larger of U and U1.

Now, suppose one morning we have X = 1 and we observe bad traffic Y = 1.
Would we have been better off taking the alternative route this morning?

A natural attempt to answer this question is to compute the likelihood of Y = 0
after the do-operation X := 0, that is, PM[X:=0](Y = 0). A quick calculation reveals
that this probability is 1

2 ·
1
2 = 1/4. Indeed, given the substitution X := 0 in our

model, for the traffic to be good we need that max{U, U0} = 0. This can only
happen when both U = 0 (probability 1/2) and U0 = 0 (probability 1/2).

But this isn’t the correct answer to our question. The reason is that we took
route X = 1 and observed that Y = 1. From this observation, we can deduce
that certain background conditions did not manifest for they are inconsistent
with the observed outcome. Formally, this means that certain settings of the noise
variables (U, U0, U1) are no longer feasible given the observed event {Y = 1, X = 1}.
Specifically, if U and U1 had both been zero, we would have seen no bad traffic
on route X = 1, but this is contrary to our observation. In fact, the available
evidence {Y = 1, X = 1} leaves only the following settings for U and U1:
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Table 5.2: Possible noise settings after observing evidence

U U1

0 1

1 1

1 0

We leave out U0 from the table, since its distribution is unaffected by our
observation. Each of the remaining three cases is equally likely, which in particular
means that the event U = 1 now has probability 2/3. In the absence of any
additional evidence, recall, U = 1 had probability 1/2. What this means is that
the observed evidence {Y = 1, X = 1} has biased the distribution of the noise
variable U toward 1. Let’s use the letter U′ to refer to this biased version of U.
Formally, U′ is distributed according to the distribution of U conditional on the
event {Y = 1, X = 1}.

Working with this biased noise variable, we can again entertain the effect of
the action X := 0 on the outcome Y. For Y = 0 we need that max{U′, U0} = 0.
This means that U′ = 0, an event that now has probability 1/3, and U0 = 0
(probability 1/2 as before). Hence, we get the probability 1/6 = 1/2 · 1/3 for the
event that Y = 0 under our do-operation X := 0, and after updating the noise
variables to account for the observation {Y = 1, X = 1}.

To summarize, incorporating available evidence into our calculation decreased
the probability of no traffic (Y = 0) when choosing route 0 from 1/4 to 1/6. The
intuitive reason is that the evidence made it more likely that it was generally a bad
traffic day, and even the alternative route would’ve been clogged. More formally,
the event that we observed biases the distribution of exogenous noise variables.

We think of the result we just calculated as the counterfactual of choosing the
alternative route given the route we chose had bad traffic.

The general recipe

We can generalize our discussion of computing counterfactuals from the previous
example to a general procedure. There were three essential steps. First, we
incorporated available observational evidence by biasing the exogenous noise
variables through a conditioning operation. Second, we performed a do-operation
in the structural causal model after we substituted the biased noise variables. Third,
we computed the distribution of a target variable. These three steps are typically
called abduction, action, and prediction, as can be described as follows.

Definition 5. Given a structural causal model M, an observed event E, an action X := x
and target variable Y, we define the counterfactual YX:=x(E) by the following three step
procedure:

1. Abduction: Adjust noise variables to be consistent with the observed event. Formally,
condition the joint distribution of U = (U1, ..., Ud) on the event E. This results in a
biased distribution U′.
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2. Action: Perform do-intervention X := x in the structural causal model M resulting
in the model M′ = M[X := x].

3. Prediction: Compute target counterfactual YX:=x(E) by using U′ as the random
seed in M′.

It’s important to realize that this procedure defines what a counterfactual is
in a structural causal model. The notation YX:=x(E) denotes the outcome of the
procedure and is part of the definition. We haven’t encountered this notation
before. Put in words, we interpret the formal counterfactual YX:=x(E) as the
value Y would’ve taken had the variable X been set to value x in the circumstances
described by the event E.

In general, the counterfactual YX:=x(E) is a random variable that varies with U′.
But counterfactuals can also be deterministic. When the event E narrows down
the distribution of U to a single point mass, called unit, the variable U′ is constant
and hence the counterfactual YX:=x(E) reduces to a single number. In this case, it’s
common to use the shorthand notation Yx(u) = YX:=x({U = u}), where we make
the variable X implicit, and let u refer to a single unit.

The motivation for the name unit derives from the common situation where
the structural causal model describes a population of entities that form the atomic
units of our study. It’s common for a unit to be an individual (or the description of
a single individual). However, depending on application, the choice of units can
vary. In our traffic example, the noise variables dictate which route we take and
what the road conditions are.

Answers to counterfactual questions strongly depend on the specifics of the
structural causal model, including the precise model of how the exogenous noise
variables come into play. It’s possible to construct two models that have identical
graph structures, and behave identically under interventions, yet give different
answers to counterfactual queries.185

Potential outcomes

The potential outcomes framework is a popular formal basis for causal inference,
which goes about counterfactuals differently. Rather than deriving them from a
structural causal model, we assume their existence as ordinary random variables,
albeit some unobserved.

Specifically, we assume that for every unit u there exist random variables Yx(u)
for every possible value of the assignment x. In the potential outcomes model,
it’s customary to think of a binary treatment variable X so that x assumes only
two values, 0 for untreated, and 1 for treated. This gives us two potential outcome
variables Y0(u) and Y1(u) for each unit u. There is some potential for notational
confusion here. Readers familiar with the potential outcomes model may be used
to the notation “Yi(0), Yi(1)” for the two potential outcomes corresponding to unit i.
In our notation the unit (or, more generally, set of units) appears in the parentheses
and the subscript denotes the substituted value for the variable we intervene on.

The key point about the potential outcomes model is that we only observe
the potential outcome Y1(u) for units that were treated. For untreated units we
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observe Y0(u). In other words, we can never simultaneously observe both, although
they’re both assumed to exist in a formal sense. Formally, the outcome Y(u) for
unit u that we observe depends on the binary treatment T(u) and is given by the
expression:

Y(u) = Y0(u) · (1− T(u)) + Y1(u) · T(u)

It’s often convenient to omit the parentheses from our notation for counterfac-
tuals so that this expression would read Y = Y0 · (1− T) + Y1 · T.

We can revisit our traffic example in this framework. The next table summarizes
what information is observable in the potential outcomes model. We think of the
route we choose as the treatment variable, and the observed traffic as reflecting one
of the two potential outcomes.

Table 5.3: Traffic example in the potential outcomes model

Route X Outcome Y0 Outcome Y1 Probability

0 0 ? 1/8

0 1 ? 3/8

1 ? 0 1/8

1 ? 1 3/8

Often this information comes in the form of samples. For example, we might
observe the traffic on different days. With sufficiently many samples, we can
estimate the above frequencies with arbitrary accuracy.

Table 5.4: Traffic data in the potential outcomes model

Day Route X Outcome Y0 Outcome Y1

1 0 1 ?
2 0 0 ?
3 1 ? 1

4 0 1 ?
5 1 ? 0

. . . . . . . . . . . .

A typical query in the potential outcomes model is the average treatment effect
E[Y1 −Y0]. Here the expectation is taken over the properly weighted units in our
study. If units correspond to equally weighted individuals, the expectation is an
average over these individuals.

In our original traffic example, there were 16 units corresponding to the back-
ground conditions given by the four binary variables U, U0, U1, UX. When the units
in the potential outcome model agree with those of a structural causal model, then
causal effects computed in the potential outcomes model agree with those com-
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puted in the structural equation model. The two formal frameworks are perfectly
consistent with each other.

As is intuitive from the table above, causal inference in the potential outcomes
framework can be thought of as filling in the missing entries (“?”) in the table
above. This is sometimes called missing data imputation and there are numerous
statistical methods for this task. If we could reveal what’s behind the question
marks, estimating the average treatment effect would be as easy as counting rows.

There is a set of established conditions under which causal inference becomes
possible:

1. Stable Unit Treatment Value Assumption (SUTVA): The treatment that one
unit receives does not change the effect of treatment for any other unit.

2. Consistency: Formally, Y = Y0(1− T) + Y1T. That is, Y = Y0 if T = 0 and
Y = Y1 if T = 1. In words, the outcome Y agrees with the potential outcome
corresponding to the treatment indicator.

3. Ignorability: The potential outcomes are independent of treatment given
some deconfounding variables Z, i.e., T ⊥ (Y0, Y1) | Z. In words, the
potential outcomes are conditionally independent of treatment given some
set of deconfounding variables.

The first two assumptions automatically hold for counterfactual variables de-
rived from structural causal models according to the procedure described above.
This assumes that the units in the potential outcomes framework correspond to the
atomic values of the background variables in the structural causal model.

The third assumption is a major one. It’s easiest to think of it as aiming to
formalize the guarantees of a perfectly executed randomized controlled trial. The
assumption on its own cannot be verified or falsified, since we never have access to
samples with both potential outcomes manifested. However, we can verify if the
assumption is consistent with a given structural causal model by checking if the
set Z blocks all backdoor paths from treatment T to outcome Y.

There’s no tension between structural causal models and potential outcomes
and there’s no harm in having familiarity with both. It nonetheless makes sense to
say a few words about the differences of the two approaches.

We can derive potential outcomes from a structural causal model as we did
above, but we cannot derive a structural causal model from potential outcomes
alone. A structural causal model in general encodes more assumptions about the
relationships of the variables. This has several consequences. On the one hand, a
structural causal model gives us a broader set of formal concepts (causal graphs,
mediating paths, counterfactuals for every variable, and so on). On the other hand,
coming up with a plausibly valid structural causal model is often a daunting task
that might require knowledge that is simply not available. We will dive deeper into
questions of validity below. Difficulty to come up with a plausible causal model
often exposes unsettled substantive questions that require resolution first.

The potential outcomes model, in contrast, is generally easier to apply. There’s
a broad set of statistical estimators of causal effects that can be readily applied
to observational data. But the ease of application can also lead to abuse. The
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Figure 5.11: Causal graph with mediator Z.

assumptions underpinning the validity of such estimators are experimentally
unverifiable. Frivolous application of causal effect estimators in situations where
crucial assumptions do not hold can lead to false results, and consequently to
ineffective or harmful interventions.

Counterfactual discrimination analysis

Counterfactuals serve at least two purposes for us. On the technical side, counter-
factuals give us a way to compute path-specific causal effects. This allows us to
make path analysis a quantitative matter. On the conceptual side, counterfactuals
let us engage with the important normative debate about whether discrimination
can be captured by counterfactual criteria. We will discuss each of these in turn.

Quantitative path analysis

Mediation analysis is a venerable subject dating back decades.186 Generally speak-
ing, the goal of mediation analysis is to identify a mechanism through which a
cause has an effect. We will review some recent developments and how they relate
to questions of discrimination.

In the language of our formal framework, mediation analysis aims to decompose
a total causal effect into path-specific components. We will illustrate the concepts
in the basic three variable case of a mediator, although the ideas extend to more
complicated structures.

There are two different paths from X to Y. A direct path and a path through
the mediator Z. The conditional expectation E[Y | X = x] lumps together influence
from both paths. If there were another confounding variable in our graph influenc-
ing both X and Y, then the conditional expectation would also include whatever
correlation is the result of confounding. We can eliminate the confounding path
by virtue of the do-operator E[Y | do(X := x)]. This gives us the total effect of the
action X := x on Y. But the total effect still conflates the two causal pathways, the
direct effect and the indirect effect. We will now see how we can identify the direct
and indirect effects separately.

The direct effect we already dealt with earlier as it did not require any counter-
factuals. Recall, we can hold the mediator fixed at level Z := z and consider the
effect of treatment X := 1 compared with no treatment X := 0 as follows:
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E [Y | do(X := 1, Z := z)]−E [Y | do(X := 0, Z := z)] .

We can rewrite this expression in terms of counterfactuals equivalently as:

E [YX:=1,Z:=z −YX:=0,Z:=z] .

To be clear, the expectation is taken over the background variables in our
structural causal models. In other words, the counterfactuals inside the expec-
tation are invoked with an elementary setting u of the background variables,
i.e., YX:=1,Z:=z(u) − YX:=0,Z:=x(u) and the expectation averages over all possible
settings.

The formula for the direct effect above is usually called controlled direct effect,
since it requires setting the mediating variable to a specified level. Sometimes it
is desirable to allow the mediating variable to vary as it would had no treatment
occurred. This too is possible with counterfactuals and it leads to a notion called
natural direct effect, defined as:

E [YX:=1,Z:=ZX:=0 −YX:=0,Z:=ZX:=0 ] .

The counterfactual YX:=1,Z:=ZX:=0 is the value that Y would obtain had X been
set to 1 and had Z been set to the value Z would’ve assumed had X been set to 0.

The advantage of this slightly mind-bending construction is that it gives us an
analogous notion of natural indirect effect:

E [YX:=0,Z:=ZX:=1 −YX:=0,Z:=ZX:=0 ] .

Here we hold the treatment variable constant at level X := 0, but let the
mediator variable change to the value it would’ve attained had treatment X := 1
occurred.

In our three node example, the effect of X on Y is unconfounded. In the absence
of confounding, the natural indirect effect corresponds to the following statement
of conditional probability (involving neither counterfactuals nor do-interventions):

∑
z

E [Y | X = 0, Z = z]
(
P(Z = z | X = 1)−P(Z = z | X = 0)

)
.

In this case, we can estimate the natural direct and indirect effect from observa-
tional data.

The technical possibilities go beyond the case discussed here. In principle,
counterfactuals allow us to compute all sorts of path-specific effects even in the
presence of (observed) confounders. We can also design decision rules that elimi-
nate path-specific effects we deem undesirable.

Counterfactual discrimination criteria

Beyond their application to path analysis, counterfactuals can also be used as
a tool to put forward normative fairness criteria. Consider the typical setup of
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Chapter 3. We have features X, a sensitive attribute A, an outcome variable Y and
a predictor Ŷ.

One criterion that is technically natural would say the following: For every
possible demographic described by the event E := {X := x, A := a} and every
possible setting a′ of A we ask that the counterfactual ŶA:=a(E) and the counterfac-
tual ŶA:=a′(E) follow the same distribution.

Introduced as counterfactual fairness,187 we refer to this condition as counter-
factual demographic parity, since it’s closely related to the observational criterion
conditional demographic parity. Recall, conditional demographic parity requires that
in each demographic defined by a feature setting X = x, the sensitive attribute
is independent of the predictor. Formally, we have the conditional independence
relation Ŷ ⊥ A | X. In the case of a binary predictor, this condition is equivalent to
requiring for all feature settings x and groups a, a′:

E[Ŷ | X = x, A = a] = E[Ŷ | X = x, A = a′]

The easiest way to satisfy counterfactual demographic parity is for the predictor Ŷ
to only use non-descendants of A in the causal graph. This is analogous to the
statistical condition of only using features that are independent of A.

In the same way that we defined a counterfactual analog of demographic parity,
we can explore causal analogs of other statistical criteria in Chapter 3. In doing so,
we need to be careful in separating technical questions about the difference between
observational and causal criteria from the normative content of the criterion. Just
because a causal variant of a criterion might get around some statistical issues of
non-causal correlations does not mean that the causal criterion resolves normative
concerns or questions with its observational cousin.

Counterfactuals in the law

We’ll now scratch the surface of a deep subject in legal scholarship that we return
to in Chapter 6 after developing greater familiarity with the legal background. The
subject is the relationship of causal counterfactual claims and legal cases of discrim-
ination. Many technical scholars see support for a counterfactual interpretation
of United States discrimination law in various rulings by judges that seemed to
have invoked counterfactual language. Here’s a quote from a popular textbook on
causal inference:188

U.S. courts have issued clear directives as to what constitutes employ-
ment discrimination. According to law makers, “The central question
in any employment-discrimination case is whether the employer would
have taken the same action had the employee been of a different race
(age, sex, religion, national origin etc.) and everything else had been
the same.” (In Carson vs Bethlehem Steel Corp., 70 FEP Cases 921, 7th
Cir. (1996).)

Unfortunately, the situation is not so simple. This quote invoked here—and in
several other technical papers on the topic—expresses the opinion of judges in the
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7th Circuit Court at the time. This court is one of thirteen United States courts of
appeals. The case has little precedential value; the quote cannot be considered a
definitive statement on what employment discrimination means under either Title
VII or Equal Protection law.

More significant in U.S. jurisprudence is the standard of “but-for causation”
that has gained support through a 2020 U.S. Supreme Court decision relating to
sex discrimination in the case Bostock v. Clayton County. In reference to the Title
VII statute about employment discrimination in the Civil Rights Act of 1964, the
court argued:

While the statute’s text does not expressly discuss causation, it is sugges-
tive. The guarantee that each person is entitled to the ‘same right . . . as
is enjoyed by White citizens’ directs our attention to the counterfactual—
what would have happened if the plaintiff had been White? This focus
fits naturally with the ordinary rule that a plaintiff must prove but-for
causation.

Although the language of counterfactuals appears here, the notion of but-
for causation may not effectively correspond to a correct causal counterfactual.
Expanding on how to interpret but-for causation, the court noted:

a but-for test directs us to change one thing at a time and see if the
outcome changes. If it does, we have found a but-for cause.

Changing one attribute while holding all others fixed is not in general a correct
way of computing counterfactuals in a causal graph. This important issue was
central to an major discrimination lawsuit.

Harvard college admissions

In a trial dating back to 2015, the plaintiff Students for Fair Admissions (SFFA) allege
discrimination in Harvard undergraduate admissions against Asian-Americans.
Plaintiff SFFA is an offshoot of a legal defense fund which aims to end the use of
race in voting, education, contracting, and employment.

The trial entailed unprecedented discovery regarding higher education admis-
sions processes and decision-making, including statistical analyses of individual-
level applicant data from the past five admissions cycles.

The plaintiff’s expert report by Peter S. Arcidiacono, Professor of Economics at
Duke University, claims:

Race plays a significant role in admissions decisions. Consider the
example of an Asian-American applicant who is male, is not disad-
vantaged, and has other characteristics that result in a 25% chance of
admission. Simply changing the race of the applicant to white—and
leaving all his other characteristics the same—would increase his chance
of admission to 36%. Changing his race to Hispanic (and leaving all
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other characteristics the same) would increase his chance of admission
to 77%. Changing his race to African-American (again, leaving all other
characteristics the same) would increase his chance of admission to
95%.

The plaintiff’s charge, summarized above, is based technically on the argument
that conditional statistical parity is not satisfied by a model of Harvard’s admissions
decisions. Harvard’s decision process isn’t codified as a formal decision rule. Hence,
to talk about Harvard’s decision rule formally, we first need to model Harvard’s
decision rule. The plaintiff’s expert did so by fitting a logistic regression model
against Harvard’s past admissions decisions in terms of variables deemed relevant
for the admission decision.

Formally, denote by Ŷ the model of Harvard’s admissions decisions, by X a
set of applicant features deemed relevant for admission, and denoting by A the
applicant’s reported race we have that

E[Ŷ | X = x, A = a] < E[Ŷ | X = x, A = a′]− δ ,

for some groups a, a′ and some significant value of δ > 0.
The violation of this condition certainly depends on which features we deem

relevant for admissions, formally, which features X we should condition on. Indeed,
this point is to a large extent the basis of the response of the defendant’s expert
David Card, Professor of Economics at the University of California, Berkeley. Card
argues that under a different reasonable choice of X, one that includes among other
features the applicant’s interview performance and the year they applied in, the
observed disparity disappears.

The selection and discussion of what constitute relevant features is certainly
important for the interpretation of conditional statistical parity. But arguably a
bigger question is whether a violation of conditional statistical parity constitutes
evidence of discrimination in the first place. This isn’t merely a question of having
selected the right features to condition on.

What is it the plaintiff’s expert report means by “changing his race”? The
literal interpretation is to “flip” the race attribute in the input to the model without
changing any of the other features of the input. But a formal interpretation in
terms of attribute swapping is not necessarily what triggers our moral intuition. As
we know now, attribute flipping generally does not produce valid counterfactuals.
Indeed, if we assume a causal graph in which some of the relevant features are
influenced by race, then computing counterfactuals with respect to race would
require adjusting downstream features. Changing the race attribute without a
change in any other attribute only corresponds to a counterfactual in the case
where race does not have any descendant nodes—an implausible assumption.

Attribute flipping is often mistakenly given a counterfactual causal interpreta-
tion. Obtaining valid counterfactuals is in general substantially more involved than
flipping a single attribute independently of the others. In particular, we cannot
meaningfully talk about counterfactuals without bringing clarity to what exactly
we refer to in our causal model and how we can produce valid causal models. We
turn to this important topic next.
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Figure 5.12: Religion as a root node.

Validity of causal modeling

Consider a claim of employment discrimination of the kind: The company’s hiring
practices discriminated against applicants of a certain religion. Suppose we want to
interrogate this claim using the formal machinery developed in this chapter. At the
outset, this requires that we formally introduce an attributed corresponding to the
“religious affiliation” of an individual.

Our first attempt is to model religious affiliation as a personal trait or characteris-
tic that someone either does or does not possess. This trait, call it A, may influence
choices relating to one’s appearance, social practices, and variables relevant to the
job, such as, the person’s level of education Z. So, we might like to start with a
model such as the following:

Religious affiliation A is a source node in this graph, which influences the
person’s level of education Z. Members of certain religions may be steered away
from or encouraged towards obtaining a higher level of education by their social
peer group. This story is similar to how in our Berkeley admissions graph sex
influences department choice.

This view of religion places burden on understanding the possible indirect
pathways, such as A→ Z → Y, through which religion can influence the outcome.
There may be insufficient understanding of how a religious affiliation affects
numerous other relevant variables throughout life. If we think of religion as a
source node in a causal graph, changing it will potentially affect all downstream
nodes. For each such downstream node we would need a clear understanding of
the mechanisms by which religion influence the node. Where would such scientific
knowledge of such relationships come from?

But the causal story around religion might also be different. It could be that
obtaining a higher level of education causes an individual to lose their religious
beliefs. In fact, this modeling choice has been put forward in technical work on this
topic.32 Empirically, data from the United States General Social Survey show that
the fraction of respondents changing their reported religion at least once during a
4-year period ranged from about 20% to about 40%.189 Identities associated with
sexuality and social class were found to be even more unstable. Changing one’s
identity to better align with one’s politics appeared to explain some of this shift.
From this perspective, religious affiliation is influenced by level of education and
so the graph might look like this:

This view of religion forces us to correctly identify the variables that influence
religious affiliation and are also relevant to the decision. After all, these are the
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Figure 5.13: Religion as ancestor.

confounders between religion and outcome. Perhaps it is not just level of education,
but also socioeconomic status and other factors that have a similar confounding
influence.

What is troubling is that in our first graph education is a mediator, while in
our second graph it is a confounder. The difference is important; to quote Pearl:

As you surely know by now, mistaking a mediator for a confounder is
one of the deadliest sins in causal inference and may lead to the most
outrageous error. The latter invites adjustment; the former forbids it.182

The point is not that these are the only two possible modeling choices for
how religious affiliation might interact with decision making processes. Rather,
the point is that there exist multiple plausible choices. Either of our modeling
choices follows a natural causal story. Identifying which one is justified is no
easy task. It’s also not a task that we can circumvent by appeal to some kind of
pragmatism. Different modeling choices can lead to completely different claims
and consequences.

In order to create a valid causal model, we need to provide clarity about what
the thing is that each node references, and what relationships exist between these
things. This is a problem of ontology and metaphysics. But we also need to
know facts about the things we reference in causal models. This is a problem is
epistemology, the theory of knowledge.

These problems might seem mundane for some objects of study. We might have
strong scientifically justified beliefs on how certain mechanical parts in an airplane
interact. We can use this knowledge to reliably diagnose the cause of an airplane
crash. In other domains, especially ones relevant to disputes about discrimination,
our subject matter knowledge is less stable and subject to debate.

Social construction of categories

The difficulties we encountered in our motivating example arise routinely when
making causal statements involving human kinds and categories, such as, race,
religion, or gender, and how these interact with consequential decisions.

Consider the case of race. The metaphysics of race is a complex subject, highly
debated, featuring a range of scholarly accounts today. A book by Glasgow,
Haslanger, Jeffers, and Spencer represents four contemporary philosophical views
of what race is.190 The construction of racial categories and racial classification of
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individuals is inextricably tied to a long history of oppression, segregation, and
discriminatory practices.191, 192, 193

In the technical literature around discrimination and causality, it’s common
for researchers to model race as a source node in a causal graph, which is to say
that race has no incoming arrows. As a source node it can directly and indirectly
influence an outcome variable, say, getting a job offer. Implicit in this modeling choice
is a kind of naturalistic perspective that views race as a biologically grounded trait,
similar to sex. The trait exists at the beginning of one’s life. Other variables that
come later in life, education and income, for example, thus become ancestors in
the causal graph.

This view of race challenges us to identify all the possible indirect pathways
through which race can influence the outcome. But it’s not just this modeling
challenge that we need to confront. The view of race as a biologically grounded
trait stands in contrast with the social constructivist account of race.194, 195, 196, 190 In
this view, roughly speaking, race has no strong biological grounding but rather
is a social construct. Race stems from a particular classification of individuals by
society, and the shared experiences that stem from the classification. As such, the
surrounding social system of an individual influences what race is and how it is
perceived. In the constructivist view, race is a socially constructed category that
individuals are assigned to.

The challenge with adopting this view is that it is difficult to tease out a
set of nodes that faithfully represent the influence that society has on race, and
perceptions of race. The social constructivist perspective does not come with a
simple operational guide for identifying causal structures. In particular, socially
constructed categories often lack the kind of modularity that a causal diagram
requires. Suppose that group membership is constructed from a set of social
facts about the group and practices of individuals within the group. We might
have some understanding of how these facts and practices constitutively identify
group membership. But we may not have an understanding of how each factor
individually interacts with each other factor, or whether such a decomposition is
even possible.197

Ontological instability

The previous arguments notwithstanding, pragmatist might accuse our discussion
of adding unnecessary complexity to what might seem like a matter of common
sense to some. Surely, we could also find subtlety in other characteristics, such as,
smoking habits or physical exercise. How is race different from other things we
reference in causal models?

An important difference is a matter of ontological stability. When we say rain
caused the grass to be wet we also refer to an implicit understanding of what rain
is, what grass is, and what wet means. However, we find that acceptable in this
instance, because all three things we refer to in our causal statement have stable
enough ontologies. We know what we reference when we invoke them. To be sure,
there could be subtleties in what we call grass. Perhaps the colloquial term grass
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does not correspond to a precise botanical category, or one that has changed over
time and will again change in the future. However, by making the causal claim,
we implicitly assert that these subtleties are irrelevant for the claim we made. We
know that grass is a plant and that other plants would also get wet from rain. In
short, we believe the ontologies we reference are stable enough for the claim we
make.

This is not always an easy judgment to make. There are, broadly speaking, at
least two sources of ontological instability. One stems from the fact that the world
changes over time. Both social progress, political events, and our own epistemic
activities may obsolete theories, create new categories, or disrupt existing ones.196

Hacking’s work describes another important source of instability. Categories lead
people who putatively fall into such categories to change their behavior in possibly
unexpected ways. Individuals might conform or disconform to the categories
they are confronted with. As a result, the responses of people, individually or
collectively, invalidate the theory underlying the categorization. Hacking calls
this a “looping effect”.198 As such, social categories are moving targets that need
constant revision.

Certificates of ontological stability

The debate around human categories in causal models is by no means new. But
it often surfaces in a seemingly unrelated, yet long-standing discussion around
causation and manipulation. One school of thought in causal inference aligns with
the mantra no causation without manipulation, a view expressed by Holland in an
influential article from 1986:

Put as bluntly and as contentiously as possible, in this article I take the
position that causes are only those things that could, in principle, be
treatments in experiments.199

Holland goes further by arguing that statements involving “attributes” are
necessarily statements of association:

The only way for an attribute to change its value is for the unit to
change in some way and no longer be the same unit. Statements of
“causation” that involve attributes as “causes” are always statements of
association between the values of an attribute and a response variable
across the units in a population.199

To give an example, Holland maintains that the sentence “She did well on the
exam because she is a woman” means nothing but “the performance of women on
the exam exceeds, in some sense, that of men.”199

If we believed that there is no causation without manipulation, we would have
to refrain from including immutable characteristics in causal models altogether.
After all, there is by definition no experimental mechanism that turns immutable
attributes into treatments.
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Holland’s view remains popular among practitioners of the potential outcomes
model. The assumptions common in the potential outcomes model are easiest to
conceptualize by analogy with a well-designed randomized trial. Practitioners in
this framework are therefore used to conceptualizing causes as things that could,
in principle, be a treatment in randomized controlled trials.

The desire or need to make causal statements involving race in one way or the
other not only arises in the context of discrimination. Epidemiologists encounter
the same difficulties when confronting health disparities,36, 200 as do social scientists
when reasoning about inequality in poverty, crime, and education.

Practitioners facing the need of making causal statements about race often turn
to a particular conceptual trick. The idea is to change object of study from the
effect of race to the effect of perceptions of race.201 What this boils down to is that
we change the units of the study from individuals with a race attribute to decision
makers. The treatment becomes exposure to race through some observable trait, like
the name on a CV in a job application setting. The target of the study is then
how decision makers respond to such racial stimuli in the decision-making process.
The hope behind this maneuver is that exposure to race, unlike race itself, may be
something that we can control, manipulate, and experiment with.

While this approach superficially avoids the difficulty of conceptualizing ma-
nipulation of immutable characteristics, it shifts the burden elsewhere. We now
have to sort out all the different ways in which we think that race could possibly be
perceived: through names, speech, style, and all sorts of other characteristics and
combinations thereof. But not only that. To make a counterfactual statements viz-
a-viz exposure to race, we would have to be able to create the authentic background
conditions under which all these perceptible characteristics would’ve come out
in a manner that’s consistent with a different racial category. There is no way to
construct such counterfactuals accurately without a clear understanding of what we
mean by the category of race.202 Just as we cannot talk about witchcraft in a valid
causal model for lack of any scientific basis, we also cannot talk about perceptions
of witchcraft in a valid causal model for the very same reason. Similarly, if we lack
the ontological and epistemic basis for talking about race in a valid causal model,
there is no easy remedy to be found in moving to perceptions of race.

In opposition to Holland’s view, other scholars, including Pearl, argue that
causation does not require manipulability but rather an understanding of interac-
tions. We can reason about hypothetical Volcano eruptions without being able to
manipulate Volcanoes. We can explain the mechanism that causes tides without
being able to manipulate the moon by any feasible intervention. What is required
is an understanding of the ways in which a variable interacts with other variables
in the model. Structural equations in a causal model are response functions. We can
think of a node in a causal graph as receiving messages from its parent nodes and
responding to those messages. Causality is thus about who listens to whom. We
can form a causal model once we know how the nodes in it interact.

But as we saw the conceptual shift to interaction—who listens to whom—by no
means makes it straightforward to come up with valid causal models. If causal
models organize available scientific or empirical information, there are inevitably
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limitations to what constructs we can include in a causal model without running
danger of divorcing the model from reality. Especially in sociotechnical systems,
scientific knowledge may not be available in terms of precise modular response
functions.

We take the position that causes need not be experimentally manipulable.
However, our discussion motivates that constructs referenced in causal models
need a certificate of ontological and epistemic stability. Manipulation can be
interpreted as a somewhat heavy-handed approach to clarify the ontological nature
of a node by specifying an explicit experimental mechanism for manipulating the
node. This is one way, but not the only way, to clarify what it is that the node
references.

Chapter notes

There are several introductory textbooks on the topic of causality. For a short
introduction to causality turn to the primer by Pearl, Glymour, and Jewell,188

or the more comprehensive textbook by Pearl.180 At the technical level, Pearl’s
text emphasizes causal graphs and structural causal models. Our exposition of
Simpson’s paradox and the UC Berkeley was influenced by Pearl’s discussion,
updated for a new popular audience book.182 All of these texts touch on the topic
of discrimination. In these books, Pearl takes the position that discrimination
corresponds to the direct effect of the sensitive category on a decision.

The technically-minded reader will enjoy complementing Pearl’s book with the
an open access text by Peters, Janzing, and Schölkopf185 that is also available online.
The text emphasizes two variable causal models and applications to machine
learning. See Spirtes, Glymour and Scheines203 for a general introduction based
on causal graphs with an emphasis on graph discovery, i.e., inferring causal graphs
from observational data.

Morgan and Winship204 focus on applications in the social sciences. Imbens
and Rubin205 give a comprehensive overview of the technical repertoire of causal
inference in the potential outcomes model. Angrist and Pischke206 focus on causal
inference and potential outcomes in econometrics.

Hernan and Robins207 give another detailed introduction to causal inference
that draws on the authors’ experience in epidemiology.

Pearl180 already considered the example of gender discrimination in UC Berke-
ley graduate admissions that we discussed at length. In his discussion, he implicitly
advocates for a view of discussing discrimination based on the causal graphs by
inspecting which paths in the graph go from the sensitive variable to the decision
point. The UC Berkeley example has been discussed in various other writings,
such as Pearl’s discussion in the Book of Why.182 However, the development in
this chapter differs significantly in its arguments and conclusions.

For clarifications regarding the popular interpretation of Simpson’s original
article,208 see Hernan’s article209 and Pearl’s text.180

The topic of causal reasoning and discrimination gained significant momentum
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in the computer science and statistics community around 2017. Zhang, Wu, and
Wu210 previously considered discrimination analysis via path-specific causal effects.
Kusner, Loftus, Russell, and Silva187 introduced a notion of counterfactual fairness.
The authors extend this line of thought in another work.211 Chiappa introduces
a path-specific notion of counterfactual fairness.212 Kilbertus et al.213 distinguish
between two graphical causal criteria, called unresolved discrimination and proxy
discrimination. Both notions correspond to either allowing or disallowing paths
in causal models. Razieh and Shpitser214 conceptualize discrimination as the
influence of the sensitive attribute on the outcome along certain disallowed causal
paths. Chiappa and Isaac215 give a tutorial on causality and fairness with an
emphasis on the COMPAS debate. Kasirzadeh and Smart extend on the discussion
about the difficulties with constructing causal counterfactual claims about social
categories in the context of machine learning problems.216

There is also extensive relevant scholarship in other disciplines that we cannot
fully survey here. Of relevance is the vast literature in epidemiology on health
disparities. In particular, epidemiologists have grappled with race and gender in
causal models. See, for example, the article by VanderWeele and Robinson,200 as
well as Krieger’s comment on the article,217 and Krieger’s article on discrimination
and health inequalities218 for a starting point.

We retrieved the data about UC Berkeley admissions from
http://www.randomservices.org/random/data/Berkeley.html on Dec 27,
2018. There is some discrepancy with the data displayed on the Wikipedia page
for Simpson’s paradox, which does not affect our discussion.
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6
Understanding United States anti-
discrimination law

In this chapter, we hope to give you an appreciation of what United States anti-
discrimination law is and isn’t. We’ll use the U.S. legal experience as a case study
of how to regulate discrimination. Other countries take different approaches.
We don’t aim to describe U.S. law comprehensively but rather give a stylized
description of the key concepts.

We’ll start with a history of how the major civil rights statutes came to be, and
draw lessons from this history that continue to be relevant today. Law represents
one attempt to operationalize moral notions. It is an important and illustrative one.
We will learn from the way in which the law navigates many tricky tradeoffs. But
we will also study its limitations and explain why we think algorithmic fairness
shouldn’t stop at legal compliance.

The final section addresses the specifics of regulating machine learning. Al-
though U.S. antidiscrimination law predates the widespread use of machine learn-
ing, it is just as applicable if a decision maker uses machine learning or other
statistical techniques. That said, machine learning introduces many complications
to the application of these laws, and existing law may be inadequate to address
some types of discrimination that arise when machine learning is involved. At the
same time, we believe that there is also an opportunity to exercise new regulatory
tools to rein in algorithmic discrimination.

This chapter can be skipped on a first reading of the book, but a few connections
are worth pointing out. The first section elaborates on a central viewpoint of the
book, especially Chapter 4, which is that attributes like race and gender are salient
because they have historically served as organizing principles of many societies.
That section also sets up Chapter 8 that conceives of discrimination more broadly
than in discrete moments of decision making. The section on the limitations of
the law motivates another core theme of this book, which is using the debates
on machine learning and discrimination as an opportunity to revisit the moral
foundations of fairness.
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History and overview of U.S. anti-discrimination law

Every inch of civil rights protections built into law was fought and hard won
through decades of activism. In this section, we briefly describe these histories of
oppression and discrimination, the movements that arose in response to them, and
the legal changes that they accomplished.

Black Civil Rights

The Black civil rights movement, often simply called the civil rights movement, has
its roots in slavery in the United States and the rampant racial discrimination that
persisted after its abolition. The period immediately following the American civil
war and the abolition of slavery (roughly 1865-1877) is called the Reconstruction
era. It resulted in substantial progress in civil rights. Notably, the Constitution
was amended to abolish slavery (13th amendment), require equal protection under
the laws (14th amendment), and guarantee voting rights regardless of race (15th
amendment).

However, these gains were rapidly undone as White supremacists gained
political control in the Southern states, ushering in the so-called Jim Crow era, a
roughly 75-year period in which the state orchestrated stark racial segregation,
discrimination, and near-total disenfranchisement of Black people. Nearly every
facet of life was racially segregated, including residential neighborhoods, schools,
workplaces, and places of public accommodation such as restaurants and hotels.
This segregation was blessed by the Supreme Court in 1896, when it ruled that
laws mandating segregation did not violate the Equal Protection clause under the
“separate but equal” doctrine.219 But in practice, things were far from equal. The
jobs available to Black people usually paid far less, schools were underfunded and
subject to closure, and accommodations were fewer and of inferior quality. As
late as the 1950s, a cross-country drive by a Black person would have involved
great peril, i.e., showing up at a small town at night and being refused a place to
stay.220 Black people could not democratically challenge these laws as the states
erected numerous practical barriers to voting — ostensibly race neutral, but with
vastly different effects by race — and Black people at the polls were often met with
violence. As a result, disenfranchisement was highly effective. For example, in
Louisiana until the mid 1940s, less than 1% of African Americans were registered
to vote.221 (Data limitations preclude a nation-wide assessment of the effectiveness
of disenfranchisement.)

Meanwhile, in the Northern states, racial discrimination operated in more
indirect ways. Residential zoning laws that prohibited higher-density, lower-cost
housing were used to keep poorer Black residents out of White neighborhoods. The
practice of “redlining” by banks, orchestrated to some extent by federal regulators,
limited the availability of credit, especially mortgages, in specific neighborhoods.222

The justification proffered was the level of risk, but it had the effect of discrimination
against Black communities. Another prevalent technique to achieve segregation was
the use of racially restrictive covenants in which property owners in a neighborhood
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entered into a contract not to sell or rent to non-White people.1

The civil rights movement emerged in the late 1800s and the early 1900s to
confront these widespread practices of racism. Broadly, the movement adopted
two complementary strategies: one was to challenge unjust laws and the other was
to advance Black society within the constraints of segregation and discrimination.
A key moment in the first prong was the formation of the National Association for
the Advancement of Colored People in 1909. In addition to lobbying and litigation
against Jim Crow laws, it sought to fight against lynching. Prominent efforts under
the second prong included the Black entrepreneurship movement — 1900-1930 has
been called the golden age of Black businesses223 — and notable achievements in
education. Many of the Historically Black Colleges and Universities were founded
during the Jim Crow era.

After decades of activism, an epochal moment was a Supreme Court ruling in
1954 that declared the segregation of public schools unconstitutional. This began
the gradual dismantling of the Jim Crow system, a process that would take decades
and whose effects we still feel today. The court victories further galvanized the
movement, leading to more intense activism and mass protests. This led to major
federal legislation in the following decade: the Civil Rights Act of 1960 and the
Voting Rights Act of 1965, both of which targeted voter suppression efforts, and the
Civil Rights Act of 1964 and the Fair Housing Act of 1968 which targeted private
discrimination. We will discuss the latter two in detail throughout this chapter.

Antidiscrimination laws were clearly a product of history and decades or
centuries-long trends – slavery, Jim Crow, and the civil rights movement. At the
same time, their proximate causes were often specific, unpredictable events. For
example, the assassination of Martin Luther King Jr. provided the impetus for the
passage of the Fair Housing Act. They also reflect political compromises that were
necessary to secure their passage. For example, Title VII of the Civil Rights Act of
1964 created the Equal Employment Opportunity Commission; was stripped of the
enforcement powers that had been present in the original wording of the title.224

Gender Discrimination

The struggle for gender equality also has a long and storied history of activism.
In the 1800s, the law did not recognize basic rights of women, including voting
and owning property. Changing this was the primary goal of first-wave feminists
whose strategies included advocacy, civil disobedience, lobbying, and legal action.
The culminating moment was the ratification of the 19th amendment in 1920,
guaranteeing women the right to vote (yet, as discussed above, Black women’s
right to vote was still limited in the South). Second-wave feminism began in the 1960s.
It targeted stereotypes about the role of women in society, private discrimination in
education and employment, and bodily rights, including reproductive rights and
domestic violence. In the early post-war years, gender norms regressed in some

1This practice continued until the Supreme Court struck it down in 1948 (Shelley v. Kraemer),
arguing that even though these were private contracts, if the state were to enforce them, it would
violate the constitution’s Equal Protection clause.
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ways (e.g., women lost access to jobs that had been available to them because of the
war) which was arguably an impetus for the movement.225 Two early legislative
victories were the Equal Pay Act of 1963 and Title VII of the Civil Rights Act of
1964 prohibiting employment discrimination.2

However, these did not initially have much impact due to the aforementioned
lack of enforcement, and the movement only intensified. An important milestone
was the founding of the National Organization of Women in 1965. Borrowing
strategies from the Black civil rights movement, the second-wave feminists adopted
a plan to litigate in the courts to secure protections for women. A notable court vic-
tory in the following decade was the expansion of abortion rights by the Supreme
Court.226 On the legislative front, two major achievements for gender equality were
Title IX of the Education Amendments Act of 1972 that prohibited sex discrimina-
tion in federally funded educational programs, and the Equal Credit Opportunity
Act that prohibited sex discrimination in credit.

Education, especially higher education, and credit were both important sectors
for women’s rights. Historically, many elite colleges simply did not accept women.
Even in the 1970s, women faced many barriers in academia: sexual harassment,
higher bars for admission, outright exclusion from some high-status fields such
as law and medicine, and limited athletic opportunities. Similarly, credit discrimi-
nation in the 1970s was also stark, such as requiring women to reapply for credit
upon marriage, usually in the husband’s name.227 After this period, the focus of
the feminist movement expanded beyond major legislative victories to include the
questioning of gender as a social construct.

LGBTQ Civil Rights

Discriminatory laws against LGBTQ people were historically numerous: prohibition
of some sexual behavior (i.e., anti-sodomy laws228), lack of marriage rights, bans on
military service and some other government positions, a failure to prohibit private
discrimination and to treat hate crimes as such, and even a prohibition of literature
advocating for gay rights under obscenity laws.

Tentative activism began in the 1950s with the first legal changes coming in the
early 60s. A pivotal movement was the 1969 Stonewall riots, a series of protests in
response to a police raid at a New York City gay bar. The aftermath of this event
kickstarted the push for U.S. LGBTQ rights, including the gay pride movement for
visibility and acceptance. In 1973, the American Psychiatric Association’s Diagnostic
and Statistical Manual of Mental Disorders dropped homosexuality as a disorder,
signaling (and furthering) a major shift in attitudes. The list of legal changes is
long and ongoing. They include state-by-state changes to laws involving sodomy,
marriage equality, private discrimination, and hate crimes; a 2003 Supreme Court
decision ruling anti-sodomy laws unconstitutional;229 and a 2015 Supreme Court
decision guaranteeing the right to marry for same-sex couples nationwide.230 In
parallel, the push for LGBTQ rights in the private sector has progressed in part

2Although the latter was primarily a response to the Black civil rights movement, sex was added
as a protected category in a last-minute amendment.
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by interpreting existing statutory prohibitions on sex discrimination, such as Title
VII of the Civil Rights Act of 1964, to encompass sexual orientation and gender
identity discrimination.231

Disability laws

Another dimension of identity covered by anti-discrimination statutes is disability.
Over a quarter of adults in the United States today have some type of disability,
including mobility disabilities, blindness or other visual disability, deafness or
other hearing disability, and cognitive disabilities.232 These and other disabilities
are distinct identities corresponding to different lived experiences and, sometimes,
cultures.3 Still, the emergence of a cross-disability coalition and identity enabled
more effective advocacy for disability rights. This movement gained steam in
the decades following World War II. Activists aimed to make disability visible,
rather than stigmatized, pitied, and hidden, and sought to achieve independent
living. Like other rights movements, disabled people faced multiple, mutually-
reinforcing barriers: society’s attitudes towards disability and disabled people, the
lack of physical accommodations and assistive technologies, and discriminatory
policies.234 Attitudes that held back disabled people weren’t just prejudice, but also
mistaken views of disability as residing in the person (the medical model) instead
of, or in addition to, being created by barriers in society (the social model). The
first federal law protecting disability rights was the Rehabilitation Act of 1973

which prohibited disability discrimination in federally funded programs. Activism
toward a broad civil rights statute continued, with the 1964 Civil Rights Act as a
model. These efforts culminated in the Americans with Disabilities Act (ADA) of
1990. While the ADA has many similarities to the other civil rights statutes, it also
has major differences due to its emphasis on accommodation in addition to formal
nondiscrimination.

Lessons

The histories of the various civil rights movements hold several lessons that con-
tinue to be relevant today. First of all, the law is a political instrument: it can
be used to discriminate, to create the conditions under which discrimination can
flourish, or to challenge discrimnation. It can be a tool for subjugation or liberation.
Laws may be facially neutral but they are created, interpreted, and enforced by
actors that respond to the changing times and to activism. Court decisions are also
influenced by contemporary activism and even scholarship.

Our brief historical discussion also helps explain why certain sectors are reg-
ulated, and not others. Education, employment, housing, credit, and public
accommodation are domains that are both highly salient to people’s life courses
and have had histories of discrimination that were deliberately used to subordinate
some groups.4

3Notably Deaf culture; for an introduction see233

4In addition, there are constitutional limitations on the ability of Congress to regulate private
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One consequence of this sector-specific approach is that the law can be tailored
to the particularities of the sector in an attempt to avoid loopholes. For example,
the Fair Housing Act encompasses the full range of practices related to housing
including sales, rentals, advertising, and financing. It lists (and prohibits) various
ways in which housing agents may subtly mislead or discourage clients belonging
to protected classes. Recognizing the importance of financing for securing housing,
it prohibits discrimination in financing with respect to “purchase, construction,
improvement, repair, or maintenance”. It even prohibits ads indicating a discrimi-
natory preference. And that includes not just categorical statements such as “no
children”, but also targeting of ads to certain geographic regions in a way that
correlates with race, and the selection of actors used in advertising.

In many cases these attempts to avoid loopholes have held up well in the
face of recent technological developments. The prohibition on discriminatory
advertising has forced online ad platforms to avoid discriminatory targeting of
housing ads.235 But this is not always so. Ride hailing platforms are able to evade
Title VII (employment discrimination) liability even though they terminate drivers
based on the (potentially discriminatory) ratings given by passengers.236

Even though laws are sector-specific, it is hard to understand discrimination
by looking at any one set of institutions (such as employment or education, much
less a single organization) in isolation. History shows us that there tend to be
multiple interlocking systems of oppression operating in tandem, such as federal
housing policy and private-sector discrimination. Similarly, the line between state
and private discrimination is not always clear.

History also shows that when disrupted, hierarchies tend to reassert themselves
by other means. For example, the end of de-jure segregation accelerated the
phenomenon of “White flight” from cities to the suburbs, exacerbating de-facto
segregation. Not only is progress fitful, regression is possible. For example,
Woodrow Wilson and his administration segregated large parts of the federal
workforce in the 1910s, eroding some of the gains Black people had made in
previous decades. And as we were writing this chapter, the Supreme Court
reversed Roe v. Wade, ending federal protection of abortion rights and enabling
severe restrictions on abortion in many states.

Another important point that is not apparent from the laws themselves is that
the various protected dimensions of identity have complex and distinct histories of
discrimination and activism, even if statutes attempt to treat them all in a uniform
and formal way. Even within a single dimension like ethnicity, the oppression and
struggles of different groups take drastically different forms. Native Americans
endured a century of attempts at forced assimilation in which children were sent
to boarding schools and asked to abandon their culture. The Chinese Exclusion
Act of 1882 all but eliminated the immigration of Chinese people for over half a
century and made conditions inhospitable for the Chinese immigrant community
that already existed. During World War II, over 100,000 people of Japanese ancestry,
the majority of whom were U.S. citizens, were interned in concentration camps

discrimination.
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under the pretense that they were disloyal to the country. These are just a few of
the more gruesome episodes of discrimination on the basis of race, ethnicity, and
national origin in U.S. history, focusing on the actions of the government. National
origin discrimination was often a thinly veiled form of racial discrimination. Thus,
although the list of protected attributes in the law may grow over time, it is not
arbitrary and is deeply informed by history.5

Equality under the law remains a contested and evolving notion. This is espe-
cially the case when antidiscrimination runs up against some countervailing value
or principle, such as religious freedom or limiting state authority. And because
the law is intertwined with our lives and livelihoods in so many ways, equality
under the law, in a broad sense, requires far more than formal nondiscrimination.
Consider gender equality. The range of legal interventions necessary to achieve it
is long and growing. Beyond voting rights and prohibition of sex and gender dis-
crimination, it includes prohibition of pregnancy and marital status discrimination,
curbing sexual harassment and sexual violence, abortion rights, maternity leave
laws, and childcare subsidies. Each one of these battles has many fronts. For exam-
ple, the #MeToo movement brought to light the role of non-disparagement clauses
by employers in settlements to silence victims of workplace sexual harassment, and
there is an ongoing effort to prohibit such clauses.

Finally, legal change is not the end of the road but in some ways the beginning.
The effects of past discrimination tend to leave an lasting imprint. The law itself,
given political realities, can only do so much to erase the effects of that history.

Table 6.1: A summary of the major anti-discrimination
statutes: Titles VI and VII of the Civil Rights act of 1964, the
Fair Housing Act, Title IX of the Education Amendments
Act of 1972, the Equal Credit Opportunity Act, and the
Americans with Disabilities Act.

Law Year
Covered entities and regulated
activities

Protected categories (* =
added later)

Title
VII

1964 Employers, employment
agencies, labor unions

Race, color, religion, sex,
national origin,
pregnancy*

Title VI 1964 Any organization receiving
federal funding (due to breadth,
doesn’t list regulated activities)

Race, color, national
origin

FHA 1968 sales, rentals, advertising, and
financing of housing

Race, color, religion,
national origin, sex(*?),
handicap, familial status.

5In the context of equal protection doctrine, the Supreme Court has explicitly listed the criteria
that qualify a trait for protection (“heightened scrutiny”): a history of past discrimination, political
powerlessness, the irrelevancy of a trait to an individual’s ability to contribute to or participate in
society, and immutability.237
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Law Year
Covered entities and regulated
activities

Protected categories (* =
added later)

Title IX 1972 Educational programs receiving
federal funding: hiring, pay,
rank, sexual harassment,
retaliation, segregation &
same-sex education

Sex

ECOA 1974 Creditors (Banks, small loan and
finance companies, retail and
department stores, credit card
companies, and credit unions.)

Race*, sex, age*, national
origin*, marital status,
receipt of public
assistance*

ADA 1990 Employers, public services,
public accommodation

Disability; record of
disability; perception of
disability

A few basics of the American legal system

The U.S. Constitution is the ultimate law of the land. The constitution created
the three branches of government: the legislature (Congress), the executive (the
president, executive agencies, and others reporting to the president), and judiciary
(the Supreme Court and other courts). All three branches have important roles
when it comes to antidiscrimination law. State and local governments and laws
also play important roles in antidiscrimination, but we will say less about them
due to our pedagogical focus on federal law.

Before we get to the three branches, it is worth noting that the constitution
itself contains two elements relevant to discrimination law: the right to the due
process of law (fifth and fourteenth amendments) and the right to equal protection
under the laws (fourteenth amendment). Both of these curtail the ability of the
government to discriminate. Equal protection law has also sometimes been used
to curtail private discrimination. Due process has been raised as a defense by
defendants of discrimination lawsuits contending that laws that curtail their ability
to discriminate violate their due process rights.

The role of Congress (legislative branch)

Laws passed by Congress are called statutory laws, as opposed to constitutional
law, case law, and other types of law. We encountered some of the major antidis-
crimination statutes earlier. But there are many practical and political barriers to
congressional action, and statutes or amendments are relatively rare. Thus, to stay
relevant in a changing world, laws are generally broadly worded policies and do
not attempt to anticipate the nuances of every situation in which they might be
applied. To interpret and enforce these policies, Congress delegates authority to
federal agencies such as the Equal Employment Opportunity Commission (estab-
lished by the Civil Rights Act of 1964). The courts also perform a vital interpretive
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function, as well as keeping a check on the power of Congress itself.
There are three main law making powers that Congress has used to enact

antidiscrimination statutes within the limits of its constitutional authority. The first
is the Commerce Clause, which allows Congress to regulate interstate commerce.
The meaning of this clause has been interpreted expansively by the Supreme
Court.6 Legislation pertaining to employment and credit antidiscrimination finds
basis in the Commerce Clause.7 The second power comes from the Fourteenth
Amendment, which guarantees to all citizens the equal protection of the laws, and
further empowers Congress to enforce it through appropriate legislation. While
the extent of state involvement needed for the Fourteenth Amendment to apply is
not settled, the Fair Housing Act and the Americans with Disabilities Act owe their
constitutional basis in part to this power. Finally, Congress has the “power of the
purse”: the ability to enact policy goals by controlling spending, and by threatening
to withhold federal funding for entities that fail to meet certain obligations. Title
VI of the Civil Rights Act of 1964 and Title IX of the Educational Amendments
Act of 1972 fall under this category, which is why they only covered organizations
receiving federal funding.

Congress has used its power to enact antidiscrimination statutes covering a
broad swath of activities. Still, there are many gaps and limitations in federal
antidiscrimination law, in part because of constitutional limitations and in part
because Congress has failed to act. As a result, state laws sometimes fill these gaps.

The role of the courts (judicial branch)

The United States adopts a common-law system, which means that courts have the
power to make law that guides decisions in future cases. This is the concept of
precedent. In disputes where the facts or principles are similar to previous cases
decided by relevant courts, judges are bound to follow the reasoning used in the
past decision (the precedent). Similarly, courts are tasked with interpreting the
statutory laws and the Constitution. This body of precedent is referred to as case
law and can be as binding as any other law. For example, the important concept of
disparate impact, under which decision making practices may be unlawful if they
have disproportionate effects even if facially neutral and without discriminatory
intent, is the result of a Supreme Court decision interpreting the scope of a
statutory law. Most of Europe, in contrast, adopts a civil law system which means
that legislation is the primary source of law and judicial decisions have less value
as precedent.

The hierarchical organization of courts determines which precedents are binding
on a particular dispute. The federal courts are organized into three levels: the

6Between 1937 and 1995, a period that includes all the statutes discussed above, not a single
statute (whether or not pertaining to discrimination) was invalidated by the Court on the ground
that Congress exceeded its power under the Commerce Clause.

7When the Civil Rights Act of 1964 was enacted, its Title II, which prohibits discrimination
in public accommodation, was famously challenged as unconstitutional by the owner of motel in
Atlanta, Georgia. The Supreme Court upheld the constitutionality of Title II, in a case that has since
had tremendous precedential value.238
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district courts at the bottom, thirteen appellate courts (also known as circuit courts)
above them, and the Supreme Court at the top. Supreme Court decisions are
binding on all lower courts and appellate court decisions are binding on the
corresponding district courts.8 The appellate courts only hear cases on appeal —
that is, when one of the parties alleges a material error in a district court’s decision.
The Supreme Court, in turn, usually only hears appeals of circuit court decisions.
The Supreme Court is not required to accept petitions for review; in fact, it only
grants review in a small fraction of requests.

When interpreting statutes, courts adopt both textual and contextual methods.
The former confines itself to the plain meaning of the statute itself, while the latter
looks to sources outside the text of the law such as lawmakers’ originally expressed
intent and the law’s purpose. The importance of contextual factors is a contested
topic and judges differ in their approaches.

So far we’ve talked about the role of the courts in making law. Of course, the
primary function of the courts is to adjudicate individual cases. So a few notes
about court procedure are in order. Litigation can be civil or criminal. Civil cases
involve wrongs against private individuals; most discrimination-related disputes
fall into this category, with a few exceptions such as hate crimes. Criminal cases
involve violations of criminal law and can only be brought by the government.9

A central feature of U.S. court procedure is the use of adversary proceedings.
The two parties to a dispute are the plaintiff (who files a complaint alleging that
they have been wronged) and the defendant (who is alleged to have committed the
wrong). Both are typically represented by attorneys, who have a lot of power in
determining how the case unfolds, with the judge having a relatively passive role
as an arbiter and not an inquisitor.

An example will bring together the aspects of the court system that we’ve
discussed so far. Consider the question of whether the websites of restaurants,
retailers, etc. must be accessible to visually impaired people. The Americans
with Disabilities Act prohibits excluding people with disabilities from availing of
the services of a place of public accommodation. But does this include websites?
Congress could not have anticipated this question in 1991, so the statute (despite
being unusually detailed, running to over 20,000 words) does not address this
question directly. One set of circuit courts has looked at Congress’s intent and
purpose and found that websites themselves can be considered places of public
accommodation in keeping with the ADA’s “broad mandate”, “sweeping purpose”,
and “comprehensive character”. Another set of circuit courts took a more textual
approach, and considers it crucial that the statute applies to the services of a place
of public accommodation, not services in a place of public accommodation. Thus,

8All of these are part of the federal court system. The state courts are separate and in fact hear
the great majority of cases, but the federal courts have jurisdiction in disputes involving federal law,
and are thus of more relevance to us.

9What makes an act a crime rather than a civil offense (other than being legally classified as
such) is a deep question. One difference is the perceived seriousness of the wrong, deserving of
retribution against the perpetrator and not just the victim being made whole. Another is the nature
of the wronged party. Crimes can be thought of as an offense against the state or against society,
which the state has an interest in preventing in order to avoid a breakdown of social order.

148



as long as there is a sufficient “nexus” between the physical place and the website,
the accessibility requirement extends to the website. In April 2021, one circuit court
ruled differently, reading the text of the statute to mean that only physical places
can be places of public accommodation and also rejecting the “nexus” standard
adopted by the second set of courts. When circuit courts are split in this way, it
usually takes the Supreme Court stepping in to resolve the inconsistency, but this
may take many years.

One reason for this state of affairs is that the Department of Justice, which
is tasked with issuing regulations to implement the ADA, hasn’t issued a final
regulation on whether websites are places of public accommodation and, if so,
what standard of accessibility they would need to satisfy. Therefore the courts had
to exercise a greater degree of interpretive latitude than they otherwise would. It
also gave rise to a concern in some courts that imposing accessibility requirements
without setting a clear standard would deprive defendants of their constitutional
right to due process. This highlights the importance of executive departments and
federal agencies, to which we will turn next.

The role of the federal agencies (executive branch)

The main anti-discrimination functions of the federal agencies are rulemaking,
guidance, and law enforcement. For example, the Equal Credit Opportunity Act
broadly makes credit discrimination unlawful, but leaves it to the Federal Reserve
to draft and interpret regulations that implement this mandate (Congress later
transferred this authority to the Consumer Financial Protection Bureau). This
process is called rulemaking. The resulting regulations constitute administrative law
and have the force of law alongside statutory law and case law.

Rules differ slightly from guidelines. A group of agencies led by the Equal
Employment Opportunity Commission issued the Uniform Guidelines for Employee
Selection Procedures in 1978 that spell out a framework for ensuring that tests and
other employee selection procedures are compliant with VII of the Civil Rights
Act of 1964. The Uniform Guidelines are widely relied upon by employers. But
the Uniform Guidelines do not constitute law. They are often referenced in court
opinions, and courts generally give significant deference to agency guidelines, but
courts are not bound by them.

It’s hard to overstate the practical importance of the agencies. Whether or not
a statute has real teeth depends in large part on the implementing agency. The
EEOC initially refused to take up gender discrimination despite being empowered
to do so. In fact, Title VII had no teeth for even racial discrimination until amended
in 1972 to empower the EEOC to take action (the Equal Employment Opportunity
Act of 1972).239

Agencies differ in their level of political independence; some are housed within
the executive (such as the Department of Housing and Urban Development and
the Department of Labor) while others are more independent (such as the EEOC
and the Federal Trade Commission (FTC)). The latter have enforcement powers
in addition to rulemaking powers. They can conduct investigations and file suit
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in court; some even have their own judicial systems and are sometimes called a
de facto fourth branch of government. In short, interpreting as well as enforcing
the statutes are both tasks shared by the federal agencies and the courts. They
generally work harmoniously together,10 but the proliferation of sources of law
and methods of enforcement can lead to inefficiency and confusion.

It is worth mentioning two other important sources of policy: executive orders
and rules internal to institutions. Executive orders are directives issued by the
president of the United States. Originally intended as a way to manage the affairs
of the government, the vast reach of the federal government has meant that they
are a powerful de-facto for enacting policy. For example, precursors to Title VII in
the form of executive orders go as far back as 1941.241 Although much weaker in
scope than the eventual legislation, they illustrate the ability of presidents to act
quickly while Congress might be stalled.

Institutions, whether public or private, may set non-discrimination rules or
guidelines for their employees that may go beyond the requirements of the law. For
example, asking a job candidate about their marital status is not per-se unlawful.
However, it would be construed as evidence of intent to discriminate in a legal
dispute.242 Considering this (and the fact that there is almost never a job-related
reason for such an inquiry), many organizations prohibit their interviewers from
asking such questions. On a day-to-day basis, these institutional guidelines are the
most direct nondiscrimination rules that individuals are bound by.

Case study: the evolution of Title IX

Title IX of the educational amendments act of 1972 prohibits sex discrimination
in educational institutions that receive federal funds. In 1975, the Department of
Health, Education and Welfare (HEW) published the final regulations detailing
how Title IX would be enforced. Since 1975, the federal government has issued
guidance clarifying how it interprets and enforces those regulations.

Two of the big questions surrounding Title IX were what constitutes receiving
federal financial assistance and what constitutes sex discrimination. Each of these
had the potential to vastly impact the reach of the law. In 1984, the Supreme Court
ruled that Title IX was program specific: that is, only those programs and activities
receiving direct federal funds needed to comply. This gutted the application of Title
IX: for example, most athletic programs were no longer covered since they didn’t
directly receive federal funds. In response, Congress drafted a bill specifically
intended to overturn this decision, restoring the broad scope of Title IX, which it
retains to this day.[(author?) [243]; (author?) [244]]11

10However, this has been changing since the Trump administration.240

11Incidentally, the institution at the center of this controversy was Grove City college, a conservative
Christian college which did not directly accept any federal money in an attempt to retain its autonomy.
After 1988, it would have been covered under Title IX because its students were recipients of federal
loans and grants, illustrating the broad reach of the state. To this day, the college escapes Title IX
responsibilities by prohibiting its students from receiving any federal student loans or grants (such
as Pell grants).
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Two other major disputes regarding the scope of Title IX are whether schools
are responsible for sexual harassment that happens on campuses and whether
discrimination on the basis of sexual orientation and gender identity is prohibited.
Unlike the coverage question, these continue to be the topic of vociferous legal and
political debate. On the sexual harassment front, the Supreme Court held that in
the late ’90s that schools are responsible for creating a safe environment, including
preventing harassment by other students, but “the student must show that an offi-
cial of the school with authority to respond actually knew of and was deliberately
indifferent to the harassment”. The Obama, Trump, and Biden administrations
have all introduced guidelines or regulations on this question, in turn expanding
and contracting the scope of Title IX.245 A similar political seesaw has played out
with respect to LGBTQ protections, with the latest move being an expansive inter-
pretation in 2021 by the Department of Education, buttressed by a 2020 Supreme
Court ruling also involving the relationship between sex discrimination and sexual
orientation, but in the employment discrimination context.246

How the law conceives of discrimination

There are many possible ways to define discrimination and attempt to achieve
nondiscrimination. In this section, we will discuss how the law conceives of
discrimination and how it tries to balance nondiscrimination with other ideals.

Disparate treatment and disparate impact

Imagine an employer turning down a job candidate and explicitly informing them
that this decision was on account of a protected characteristic. Such a case would
be relatively straightforward to adjudicate based on the text of the statute itself (“It
shall be an unlawful employment practice for an employer to fail or refuse to hire
an individual. . . because of such individual’s race, color, religion, sex, or national
origin.”) However, in most cases of discrimination, the decision maker’s behavior
is less explicit and the evidence is more circumstantial. To deal with these, courts
have created two main doctrines called disparate treatment and disparate impact.

Disparate treatment refers to intentional discrimination and roughly matches
the average person’s conception of discriminatory behavior. It subsumes the
straightforward case described in the previous paragraph. For more circumstantial
cases, the Supreme Court has established a so-called burden shifting framework
under Title VII (employment law). First, the plaintiff must establish a “prima facie”
case of discrimination by showing that they are a member of a protected class, was
qualified for a position, was denied it, and the position then remained open or was
given to someone not in the protected class. If the plaintiff is successful at this, the
employer must produce a legitimate, non-discriminatory reason for the adverse
decision. The plaintiff then has the burden of proving that the proffered reason is
merely a pretext for discrimination.12

12More precisely, this is only one of the possible frameworks; we describe it for illustrative purposes.
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Disparate treatment usually involves reasoning about what action the defendant
would have taken if the plaintiff’s protected characteristic had been different, with
all other facts of the case unchanged. Elsewhere in this book we argue why, from a
technical perspective, these “attribute-flipping” counterfactuals are at odds with a
nuanced understanding of causality and result in brittle tests for discrimination. In
any event, the importance of causality in disparate treatment, especially so-called
but-for causation, has increased following a 2020 Supreme Court decision231 which
held that it is impossible to engage in sexual orientation discrimination without
engaging in sex discrimination by imagining a counterfactual in which the victim’s
sex is changed without affecting anything else, including gender preference. While
celebrated from a civil rights perspective because of its implications for LGBTQ
rights, we should keep in mind that this represents a narrow understanding
of causality and its application in other scenarios may yield conclusions not so
favorable to civil rights.

In contrast to disparate treatment, disparate impact is about practices that
have a disproportionate effect on a protected class, even if unintentional. At a
high level, disparate impact must be both unjustified and avoidable. This is again
operationalized through a burden-shifting framework. First, the plaintiff must
establish that there is a disproportionate difference in selection rates between
different groups. If that can be shown, then the employer has the opportunity to
explain if the reason for the different selection rates has a business justification.
The burden then reverts to the plaintiff to show that there is an “alternative
employment practice” that would have achieved the employer’s aims while being
less discriminatory.

One way to think about disparate impact is as a way to “sniff out” well-
concealed intentional discrimination by putting the focus on its impacts, which
are more readily observable. Indeed, the case that led to the doctrine involved an
employer that introduced aptitude tests for promotion on the very day that the
Civil Rights Act of 1964, that prohibited employment discrimination based on race,
took effect.248

But disparate impact is also thought to be motivated by a consideration of
distributive justice, that is, minimizing unjustified inequalities in outcomes. In
this sense, disparate impact roughly corresponds to the middle view of equality
of opportunity that we discussed in Chapter 4. Disparate impact tries to force
decision-makers to treat seemingly dissimilar people similarly on the belief that
their current dissimilarity is a result of past injustice. It aims to compensate for
at least some of the disadvantagesuffered for unjust reasons. Indeed, in the case
mentioned above, the Supreme Court pointed out that the racial performance
disparity on aptitude tests could be explained by inequalities in the educational
system. But disparate impact doctrine has evolved over the years and the extent
to which it reflects distributive justice, as opposed to a device for illuminating
well-concealed discrimination, is thought to have waned over time.

While we have discussed these two doctrines in the context of employment

The full picture—including the game of which framework to choose—is a vast morass.247
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law, they are found in each of the six domains we discussed in the first section.
Disparate impact has been so central to the legal understanding of discrimination
that it was later incorporated into statutes, notably the ADA (disability law), but
also into Title VII (equal employment law) itself through a 1991 amendment. But
the Supreme Court has not extended the doctrine to situations where the laws or
procedures of the state (rather than private actors) violate the Equal Protection
Clause if they have a discriminatory purpose. In other words, there is no equivalent
of disparate impact doctrine for state actors, only disparate treatment.

An important general observation about antidiscrimination law—especially
for readers who may be accustomed to thinking about fairness in terms of the
statistical properties of the outputs of decision making processes—is that the law
is primarily concerned with the processes themselves. Relatedly, the way that
courts go about weighing evidence is also highly procedural, to the point where it
may seem tangential to the substantive question of whether discrimination took
place.249 Even disparate impact, despite being motivated in part by distributive
notions of justice, is treated in a formal and procedural manner. As an illustration
of the centrality of the procedural element, the DOJ’s legal manual for proving
Title VI disparate impact claims is over 20,000 words long.250

There are many possible reasons for the law’s focus on process. One is historical:
the statutes were primarily responding to blunt discrimination and formal denials
of opportunity as opposed to more subtle statistical phenomena. It is also a better
match for how the law works: the definition of discrimination cannot be divorced
from the procedure for proving it in court. A third reason is political: it is easier to
achieve consensus about fair processes than what the right distributive outcome
is. Finally, at a pragmatic level, it reflects the law’s attention to the nuances of
workplaces and other institutions, compared to which statistical fairness criteria
seem crude and oversimplified.

Avoiding excessive burdens on decision makers

A recurring theme is how much burden on decision makers is justified in pursuit
of fairness goals. For example, making accommodations for disabled employees
results in some cost to a firm.

In general, the law gives substantial deference to the interests of the decision
maker. This has been repeatedly made clear by lawmakers and the courts at various
points in time. For example, the House Judiciary Committee said on the role of
the EEOC at the moment of the agency’s inception: “management prerogatives,
and union freedoms are to be left undisturbed to the greatest extent possible.”251

The Supreme Court clarified in 2015 that “The FHA (Fair Housing Act) is not an
instrument to force housing authorities to reorder their priorities.”252

One exception is the Americans with Disabilities Act which imposes substantial
compliance requirements on a large set of firms and governments. This shouldn’t
be a surprise since the law sought to create structural changes in society, especially
to the built environment. The ADA does have an “undue hardship” defense to the
requirement that employers provide “reasonable accommodations” to qualified
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employees with disabilities, but courts appear to tolerate a higher burden than
under, say, Title VII.13 As an illustration, blind employees sued their employers for
failing to provide paid readers for four hours of the workday; the court sided with
the plaintiffs, implying that a roughly 50% increase in the cost of the employees
to the employer did not constitute an undue hardship.253 We hasten to add that
undue hardship is a multi-factor test and there is no clear or uniform cost threshold;
cost is rarely the determinative factor.

There are a range of potential justifications of the burdens on decision makers
in the academic scholarship and legislative history. Often the responsibilities of
decision makers are justified by appeal to the human rights of those being harmed,
rather than an economic analysis. For example, the ADA sought to intervene in
discrimination against disabled people that often affected their livelihoods and
sometimes cost lives.253 Alternatively, burdens are sometimes justified because
they pose only a “de minimis” cost. For example, Title VII requires employers to
make accommodations for employees’ religious beliefs, but not if it would pose
more than a minimal cost.

In between these two types of cases lie a variety of others where a more careful
balance between benefits and costs is necessary.14 We give a few brief examples
here.

• Positive externality. A hope behind the Americans with Disabilities Act was
that it would make it easier for disabled people to enter the workforce and
contribute to the overall economy.15

• Regulation as collective action. Title II of the Civil Rights Act of 1964 prohibits
discrimination in places of public accommodation (e.g., restaurants). A major
reason why such establishments discriminated against minorities is due to
the prejudices of their White customers. Title II enabled them to stop dis-
criminating, gaining business from minority customers without incurring lost
business from their White customers ; thus, the law did not impose a burden
on them but rather created an opportunity.254 Similarly, consider insurance.
In the absence of regulation, if an insurer avoids calibrating premiums to risk
in the interest of fairness, it might go out of business. But if all firms in the
market have their behavior constrained by antidiscrimination law in the same
way, they can no longer claim to be at a competitive disadvantage.

• Cheapest cost avoider. The cheapest cost avoider or least cost avoider principle
assigns liability from a harm to the party that can avoid the harm at the
lowest cost. It is the reason why firms, to some extent, bear liability for
discrimination or harassment committed by their employees. If an employer

13The ADA originally called for a higher bar: an accommodation would have to threaten the
continued existence of the employer’s business.253 In fact, the part of the law that applies to public
services does have a higher bar for the defendant: the accommodation must fundamentally alter the
nature of the service or program.

14These types of questions are studied in the field of law and economics, which applies microeco-
nomic theory to explain the effects of laws.

15In fact, the fraction of disabled individuals employed has decreased since the passage of the
ADA, although the causal effect is far from clear.
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is forced to internalize the costs of discriminatory harassment committed by
its employees, it will, on standard economic theory, invest in precautions up
to the point where they are no longer cost justified.255

• Correcting irrationality. Some commentators suggest that the rampant dis-
crimination against women before the passage of the ECOA was irrational
behavior by creditors, and women were in fact good credit risks.256 In this
view, ECOA can be seen as correcting this irrationality rather than imposing
a burden on creditors.

Limits of the law in curbing discrimination

How effective has United States antidiscrimination law been? The best-case scenario
is that the possibility of penalties has sufficiently deterred would-be discriminators
that rates of discrimination have plummeted, and, in the few remaining cases of dis-
crimination, victims manage to obtain redress through the courts. The worst-case
scenario is that the laws have had virtually no effect, and any reductions in dispari-
ties since their passage can be attributed to other factors such as discriminators
being less successful in the market.

The reality is somewhere in between. Rigorously evaluating the effect of laws
is a tricky counterfactual problem and is subject to much uncertainty and debate.
However, there is much evidence suggestive of a positive effect. For example,
one study used a natural experiment to evaluate the impact of Title VII on job
opportunities for African Americans relative to White Americans. It showed that
the relative employment of African Americans increased more in industries and
regions with a greater proportion of firms that were newly covered under Title VII
by the Equal Employment Opportunity Act of 1972.257, 239

While the gains have been non-negligible, the effectiveness of anti-
discrimination law is blunted for many reasons which we now discuss. This
motivates our view that work on algorithmic fairness should not treat the approach
adopted in antidiscrimination law as a given , but should instead reconnect with
the moral foundations of fairness.

Burdens on victims of discrimination

The law places an array of burdens on victims of discrimination if they wish to
seek legal recourse. We will use the labor market as our running example, but our
observations apply to other contexts as well.

To begin with, legal intervention is initiated by the victim, not the government,16

and cannot begin until after victims have already suffered discrimination. Regula-
tors do not prospectively review employment practices, in contrast to other areas

16There are limited exceptions to this general principle, such as the ability of enforcement agencies
to bring “pattern-or-practice” cases against repeat discriminators. A prominent example is the
Department of Justice settlement against the Pennsylvania Police Deptartment. U.S. v. Pennsylvania
& Pennsylvania State Police, no.1:14-cv-01474-SHR (M.D. Pa. July 29, 2014), https://www.justice.
gov/sites/default/files/crt/legacy/2014/07/31/pennsylvaniapdcomp.pdf.
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of law such as pharmaceutical regulation where drugs must be thoroughly tested
before being allowed on the market. Further, there is a fundamental information
asymmetry between firms and employees (or job candidates). Victims may not
even be aware that they have faced discrimination. After all, job candidates and
employees have no direct visibility into employers’ decision making process and
firms need not provide a justification for an adverse hiring or promotion decision.
Only in the domain of credit does some form of transparency requirement exist.17

Even if a victim becomes aware of discrimination, they face barriers that may
deter them from suing. Litigation involves additional mental anguish. Victims may
also be deterred by the high financial costs of litigation.18 Lawsuits typically take
several years to reach a conclusion, by which time the victim’s career may suffer a
significant and irreparable setback. If the victim remains at the firm after filing suit,
they face an uncomfortable situation in the best case, and potentially retaliation
from the employer (even though laws specifically prohibit retaliation, it remains a
common result of discrimination lawsuits). And if the victim seeks employment
elsewhere, future employers may weigh negatively the fact that the candidate sued
a previous employer for discrimination.

Victims who decide to sue face a battery of procedural hurdles. If the employer
has internal grievance procedures, the victim may be required to try those before
suing (or risk losing her claims). Another prerequisite to filing suit is to file an
administrative complaint with the Equal Employment Opportunity Commission
promptly after the discrimination starts. The timeliness requirement often puts
victims in a double bind because of the need to exhaust internal channels. It also
makes it difficult to collect the evidence necessary to prevail in court.259, 260

That brings us to the final and most serious difficulty that plaintiffs face, which
is the burden of proof. To be sure, the standard of proof that the plaintiff must
meet in discrimination cases is “preponderance of the evidence”, which means
more likely than not, which is lower than the standard in criminal cases. But even
this standard has proved daunting. According to Katie Eyer, “anti-discrimination
law is a highly rigid technical area of the law, in which any of a myriad of technical
doctrines can lead to dismissal. Courts approach the question of discrimination as
if it were a complex legal puzzle, in which any piece out of place must result in the
dismissal of the plaintiffs’ claims.”249

Specifically, in disparate treatment cases, courts have created numerous
defendant-friendly doctrines. Under the “stray remarks” doctrine, discrimina-
tory comments made by the employer about the plaintiff do not constitute evidence
of discriminatory intent unless there is a sufficiently clear causal nexus to the
decision itself. Under the “same actor” defense, if the employer was willing to hire
the plaintiff at a previous time, it is taken as evidence that the employer bears no

17However, the turn to algorithmic tools in hiring has opened the possibility of transparency
requirements and ex-ante review. A coalition of civil rights organizations have advocated for such
practices in a document laying out a set of civil rights principles for hiring assessment technologies.258

We discuss emerging ideas such as Algorithmic Impact Assessments in the final section of this chapter.
18This can be mitigated in some cases if law firms are willing to be paid on a contingency fee

basis—wherein they are paid only in the event of a favorable result as a fixed percentage of the
damages recovered—or if the statute provides for collective or class actions.
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discriminatory intent against the plaintiff. Under the “honest belief” rule, a case
can be summarily dismissed if the employer “honestly believed” in the reasons for
the decision, even if they can later be shown to be “mistaken, foolish, trivial, or
baseless.”

In disparate impact, an overlapping set of factors is arrayed against the plaintiff.
While there is no need to establish intent, there is a new set of requirements:
identifying a specific policy or practice that caused the adverse employment
decision; compiling the requisite statistics to show that the policy has a disparate
impact; and rebutting the employer’s defense that the policy is justified by job-
relatedness. The third prong is a particularly severe hurdle for plaintiffs as they
are structurally poorly positioned to identify an alternative employment practice,
lacking the knowledge of the internals of the business that the employer does.261, 253

The net result of these barriers to plaintiffs is that their odds of success at trial
are exceedingly low. Katie Eyer summarizes data from the Uncertain Justice project:
“of every 100 discrimination plaintiffs who litigate their claims to conclusion (i.e., do
not settle or voluntarily dismiss their claims), only 4 achieve any form (de minimis
or not) of relief. . . . These odds can properly be characterized as shockingly bad,
and extend (with minor differences) to every category of discrimination plaintiff,
including race, sex, age, and disability.”249

We should note that there is a widespread view that employment discrimination
lawsuits are too easy to file and too favorable to plaintiffs, a position we reject. Selmi
critically examines this perception and notes that it is prevalent among judges;
correcting this perceived imbalance may in fact be one reason for the creation of
numerous hurdles for plaintiffs.262 Whether or not one subscribes to the view that
many “nuisance lawsuits” are filed by plaintiffs alleging discrimination, it is true
that courts are highly strained and judges are wary of decisions that might open
the ” floodgates ” to lawsuits. This suggests that the burdens we have discussed
above are unlikely to go away.263, 260

The difficulty of substantive and structural reform through procedural intervention

Even if compliance with antidiscrimination law is high, and legal remedies are
readily attained, there may be even more fundamental limits to the effectiveness of
the law. To what extent do the formal limits that the law imposes on individuals
and organizations lead to a just society? How big is the gap between legal and
moral notions of unfairness?

Stephen Halpern frames the issue thus:264

In translating a social problem into the “language” of the law, lawyers
must frame their analysis in terms of contrived concepts, issues, ques-
tions, and remedies that the legal system recognizes and deems legiti-
mate. In that translation, as in any translation, there are constrictions
and distortions. Framing a social problem as a legal issue produces a
transformation of the issue itself—a reconceptualization of the problem,
yielding unique questions and concerns that first become the focus of
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the legal debate and subsequently tend to dominate public discussion.
When racial problems are reformulated as questions of legal rights,
the resulting dialogue does not capture the complexity and subtlety of
those problems or permit consideration of the fullest range of remedies
for them. Inevitably, the demands and limits of the legal process alter
the public discourse about and understanding of vital racial issues.

Halpern’s book is about racial inequality in education; his main example of
his thesis is the effort that was put into ending segregation of public schools
without much attention paid to the quality of education received by Black students
in integrated schools. Similarly, Title VI litigation focused on procedures for
processing complaints of discrimination filed with the federal government, rather
than mechanisms to vindicate substantive rights to an education of comparable
quality. He argues that “[f]ew, if any, of the factors that have an impact on
educational achievement are governed by”legal rights” or are readily translatable
into an issue of “racial discrimination”.” He gives two reasons why inequalities
persist despite the law’s formal remedies: the de-facto segregation of American
cities and the fact that academic differences often arise from instability in the home
and other social, economic, and health disparities.

While the effect of school desegregation in the United States is a vast topic, the
broader point is that limitations of the legal process restrict what is achievable—and
even shape our understanding of the issues themselves. Another example of this
comes from Richard Rothstein’s book Color of Law:222

Although most African Americans have suffered under [historically
racist government housing policies], they cannot identify, with the
specificity a court case requires, the particular point at which they were
victimized. For example, many African American World War II veterans
did not apply for government guaranteed mortgages for suburban
purchases because they knew that the Veterans Administration would
reject them on account of their race, so applications were pointless.
Those veterans then did not gain wealth from home equity appreciation
as did white veterans, and their descendants could not then inherit that
wealth as did white veterans’ descendants. With less inherited wealth,
African Americans today are generally less able than their white peers
to afford to attend good colleges. If one of those African American
descendants now learned that the reason his or her grandparents were
forced to rent apartments in overcrowded urban areas was that the
federal government unconstitutionally and unlawfully prohibited banks
from lending to African Americans, the grandchild would not have
the standing to file a lawsuit; nor would he or she be able to name a
particular party from home damages could be recovered.

Another impetus toward proceduralism comes from the interaction of the court
system with the internal procedures of organizations. Under the theory of legal
endogeneity, organizations enact procedural protections, such as diversity training
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programs, with the putative aim of curbing discrimination; over time, courts
gradually come to mistake these procedural and symbolic compliance-oriented
activities for substantive measures; but once these symbolic measures themselves
attain legal significance, substantive concerns have been pushed outside the scope
of legitimate debate.265

Further, even substantive change at individual organizations may not imply
structural change—that is, a change to the underlying factors in society that
produce disparities in the first place. Even if an employer achieved statistical
parity in hiring and promotion rates, the application rates might themselves reflect
unequal opportunity in society and/or discrimination at previous levels or stages
of the system, and there is little the law can do to compel individual decision
makers to remedy these inequalitites.

Legal interventions whose effects are both substantive and structural are rare.
One notable example is the impact of Title IX on women’s athletics. The law
has been interpreted to not only prohibit discrimination in a narrow sense but
also require equity in a number of areas such as scholarships, coaching, and
facilities. Arguably as a result of these interventions, women’s athletics in the
United States has gradually risen in prestige, weakening the gender hierarchy in
athletics, leading to greater parity in athletics even outside the collegiate context.19

In general, however, these types of substantive interventions have so far proved
less feasible than formal ones in part because of the funding they require.

Although we have contrasted procedural interventions with substantive and
structural interventions above, the line between them can be murky, and the
former can at least function as a toehold to the latter. To the extent that inequality
persists because of entrenched policies that maintain an unequal distribution of
resources, procedural interventions that allow members of historically oppressed
groups to rise to positions of authority might allow them to more effectively alter
these policies. Procedural interventions can help reduce the capacity of already
advantaged groups from usurping full control over the policy-making process. Still,
this is far from an ideal route to change, as it places the burden of advancing the
interests of specific groups on individuals who belong to those groups.

Another seeming contrast is between discrimination law and redistributive
policies, i.e., the government directly taxing certain actors and reallocating those
funds to the disadvantaged group. But discrimination law can be understood to be
a mechanism that places the economic burden of rectifying past injustice to some
extent on employers, lenders, etc. In some ways, this might be similar to a policy of
taxing employers and using those funds to support groups that have been subject
to discrimination in the past.

Affirmative action policies, in particular, occupy a space that is squarely in
between formal nondiscrimination and redistributive policies. An example of such
a policy would be a job training program offered by an employer that favored
groups with lower access to opportunities.266 However, except in rare cases, the
law does not compel affirmative action by private entities but merely allows it.

19This is not to say that fairness has been achieved in women’s athletics or athletic programs in
general: horrific sexual abuse scandals remind us that there is a long way to go.
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More commonly seen are affirmative requirements for governments. The Fair
Housing Act, in addition to nondiscrimination mandates, requires HUD and
recipients of federal funds from HUD to “affirmatively further” the policies and
purposes of the act. This might enable, for instance, subsidized housing in high-
income communities that opens up access to higher-quality schools and amenities.
However, this part of the FHA has largely lain dormant. Thus, at least some of the
limitation of the law in creating meaningful change can be attributed to the lack of
political will to fully act upon existing laws, rather than an inherent limitation of
the legal system.

Regulating machine learning

Although U.S. antidiscrimination law predates the widespread use of machine
learning, it is just as applicable if a decision maker uses machine learning or other
statistical techniques. That said, machine learning introduces many complications
to the application of these laws. These complications are being vigorously debated
in the legal scholarship, and many scholars are concerned that existing law may
be inadequate to address the types of discrimination that arise when machine
learning is involved. At the same time, there is also an opportunity to exercise new
regulatory tools to rein in algorithmic discrimination. There is little case law on
this topic, so our discussion of these issues will be based on legal scholarship. As
before, our discussion is U.S.-centric but we touch upon the EU’s General Data
Protection Regulation (GDPR) in a few places.

Disparate treatment

Recall that the two main anti-discrimination doctrines are disparate treatment and
disparate impact. Disparate treatment is principally concerned with the explicit
intent to discriminate on the basis of legally protected characteristics; in contrast,
disparate impact focuses on decision-making where there is no explicit intent to
discriminate, but where even decisions made on the basis of seemingly benign
characteristics nevertheless results in unjustified disparities along characteristics
that are legally protected.

Most reports of discrimination in machine learning have been cases of unin-
tentional rather than intentional discrimination. Besides, developers of machine
learning systems who intend to discriminate are unlikely to rely explicitly on pro-
tected attributes due to the easy availability of proxies. When this happens, it can
be hard to prove that there was an intent to mask discrimination. For these reasons,
disparate treatment is rarely invoked and disparate impact is seen as much more
relevant. We will return to disparate impact shortly. But one important question
involving disparate treatment relates to systems that explicitly rely on the protected
attribute to correct data biases or mitigate the effects of past discrimination. Does
this constitute disparate treatment? In other words, does law impose limits on
algorithmic fairness interventions?
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The answer is nuanced. One relatively bright line in the law is that selection
quotas are unconstitutional. In machine learning terms, this roughly maps to the
difference between techniques that aim to enforce parity and those that merely
penalize disparity during the optimization step. The latter type of technique is
analogous to a process that is race conscious and values diversity but still allows
the final distribution to vary depending on the set of candidates. It is helpful,
as always, to remember that technical distinctions rarely map cleanly to legal
determinations.

There is also a major difference between an individual decision made on the
basis of a protected attribute and an overall policy that takes the interests of
protected groups into account. Disparate treatment primarily applies to the former
type of decision. This is similar to the distinction between the use of a protected
attribute at training versus test time, although, again, this distinction by itself is far
from legally determinative.

A Supreme Court case that is often cited as an example of the tension between
disparate treatment and disparate impact (and the disparate-treatment pitfalls of
race-conscious decision making) is Ricci v. DeStefano. The case arose because
the New Haven fire department scrapped a promotional exam after finding that
Black firefighters had a lower passage rate than White firefighters. The department
worried that it would open itself to disparate impact liability. But it was then sued
by the White and Hispanic firefighters who would have qualified for promotion
based on the exam. The court agreed with the plaintiffs that the department had
engaged in disparate treatment against them.

Pauline Kim notes a crucial distinguishing feature of the Ricci case: the plaintiffs
had already invested considerable time and expense in studying for the exam, and
thus the department’s actions resulted in concrete harm to specific individuals.
In Kim’s view, the court’s logic wouldn’t apply when an employer prospectively
makes a change to its hiring practices in order to avoid the potential for disparate
impact.267

Finally, even if a practice constitutes prima-facie disparate treatment, it may
be legal if it is part of a valid affirmative action program, i.e., one that aims
to remedy past discrimination. In employment, the Supreme Court has ruled
that race- or gender-based affirmative action programs are valid if they seek to
eliminate “manifest imbalances” in “traditionally segregated job categories” and
do not “unnecessarily trammel” the interests of other candidates. Some scholars
have argued that this should hold for voluntary algorithmic affirmative action as
well.268

Disparate impact

To understand how disparate impact applies to statistical decision making, we
must unpack the legal doctrine. The burden-shifting framework established by
the Supreme Court for Title VII employment discrimination claims works as
follows.269 First, the plaintiff must establish a prima-facie case by showing a
sufficient difference in selection rates between different groups. What constitutes a
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sufficient difference is unclear. The EEOC has established a threshold of four-fifths
(i.e. a difference of 20%) as a guideline, but this is not a strict rule. In a big-data
world, some commentators have argued that the criterion should be based on
statistical significance of the difference rather than the magnitude.20

If the plaintiff is successful at showing a sufficient difference, burden shifts to
the defendant, who must then establish that the challenged practice is “job related”
and consistent with “business necessity”. If the defendant can show this, then the
plaintiff can still win by showing that there is an “alternative employment practice”
that would have achieved the employer’s aims while being less discriminatory.

The critical step from the perspective of statistical decision making is the
question of business necessity. One way the employer can show this is through
“empirical data demonstrating that the selection procedure is predictive of or sig-
nificantly correlated with important elements of job performance.” Since machine
learning is a technique for establishing predictive validity, commentators such
as Barocas and Selbst suggest that this represents an exceedingly low bar for
employers.9 As long as the target variable used in a predictive model is putatively
job-related, the requirement is satisfied.

On the other hand, Pauline Kim argues that Title VII can in fact effectively
address discriminatory effects of machine learning, based on a close reading of the
statute.270 However, the doctrine that has developed since its passage is a poor fit
for addressing discriminatory machine learning. For example, the requirement for
the plaintiff to identify a specific employment practice that caused the disparity
developed in an era when written tests were the primary vehicle for disparate
impact. But when a statistical model is at play, especially an uninterpretable
one that uses a large number of features, it is not clear what the plaintiff is
supposed to identify. Thus, the doctrine will have to evolve if Title VII is to address
discriminatory machine learning.

Another issue that’s specific to automated decision making arises from the fact
that the software is usually not developed in-house by the decision maker but
rather by specialized external firms. For example, companies such as Hirevue and
Pymetrics offer tools to automate part of the hiring process and Upstart provides a
predictive model for loan underwriting. In such cases, who should bear liability?
In employment law, employers, not vendors, bear legal liability.271 But employers
(and other clients of these tools) resist this since they usually lack the expertise
to conduct statistical validation. Shifting some or all of the liability from clients
to vendors would have pros and cons from an anti-discrimination perspective. It
might mean that vendors become much more careful at testing their offerings. On
the other hand, even if a tool has been broadly tested for disparate impact, it may
perform differently in the context of a particular employer’s applicant pool. Further,
plaintiffs may face even more difficulty in showing an alternative employment
practice.

While disparate treatment and disparate impact are the two main prongs of anti-
discrimination law, when it comes to data-driven decisions the anti-discrimination

20In fact, statistical significance has always been a part of the EEOC criteria alongside substantive
significance.
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toolbox is wider and includes privacy law, explanation, and potentially consumer
protection law. We discuss these in turn.

Privacy

When we worry about privacy, the underlying concern is often that data about us
could be used to discriminate or might result in adverse treatment. For example, if
a job interviewer inquired about religion, it may be considered a privacy violation.
The harm that animates this worry is the denial of a job. As another example,
reports that the retailer Target uses shopping records to identify pregnant customers
sparked outrage.272 The potential for harm arises because pregnancy is a time
when individuals are particularly susceptible to manipulation through marketing
(which is the reason that marketers are interested in pregnancy in the first place).

Yet, data privacy law and anti-discrimination law have largely been separate in
the United States. Returning to the above example, it is not privacy law that forbids
interviewers from asking about religion. Rather, since employment law forbids
discriminating on the basis of religion, interpretive guidance from the EEOC and,
often, from institutions themselves discourages such questions during interviews.21

Still, given the normative alignment, it is natural to wonder whether privacy
law can be adapted to serve antidiscrimination ends. There is a lot of intuitive
appeal to this idea, especially when it comes to machine learning. If a decision
making system relies on data, why not put restrictions on the flow of data to
prevent unjustified discrimination?

But when we examine this argument in more detail, difficulties emerge. The
most obvious is the issue of proxies. As we discussed in Chapter 3 , prohibiting
access to sensitive attributes such as race or gender typically has a negligible impact
on a classifier when rich datasets are available. It isn’t just that the decision maker
may train a model to predict the sensitive attribute from innocuous attributes, as
in the Target example above. It may instead directly use the innocuous attributes
to predict the outcome of interest, such as the susceptibility of a particular person
to a particular marketing message. This is in fact exactly what has been shown to
happen on Facebook-scale advertising platforms.274

If proxies are the problem, another approach is to prohibit the collection of
proxies. This is the idea behind “ban the box” laws in U.S. states that prohibit
employers from inquiring about criminal history. Ban-the-box has two motives.
One is to make it easier for formerly incarcerated people to be rehabilitated into
society through employment. In this view, criminal history itself can be seen as the
sensitive attribute. The other motive is to combat the racially disparate impact of
discrimination against fomerly incarcerated people. Here, criminal history can be
seen as a proxy for race. It is this view that is of interest to us.

21An early attempt to mingle privacy and accountability (but not antidiscrimination) goals is seen
in t he Fair Information Practice Principles. The FIPPS contain the seeds of comprehensive data
protection laws enacted around the world. In the U.S., they do not have the force of law, except in
some sectoral laws such as the Fair Credit Reporting Act. A watered-down version of FIPPS focusing
on “notice and choice” governs U.S. online commerce.273
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An influential study by Agan and Starr found that employers increased racial
discrimination when they were subject to ban-the-box laws.275 What does this
mean for the prospect of preventing discrimination by prohibiting information
flows? One view is that in the light of this finding, ban-the-box laws clearly harm
more than they help. But another perspective is that racial discrimination is already
unlawful, so what the study really reveals is the need to step up auditing and
enforcement. If that were to happen, ban-the-box laws might be able to achieve
their intended effects.

Going beyond protected attributes and their proxies, privacy law may make
it harder to amass dossiers on individuals (for example, containing shopping
or browsing records), and we might hope that this would make discrimination
harder. While a full discussion of this is beyond our scope, U.S. privacy law is often
criticized for failing to accomplish this effectively, for several reasons. There is no
general federal privacy law analogous to the GDPR in the E.U. Only a few sectoral
privacy laws exist, such as the Health Insurance Portability and Accountability
Act (HIPAA). Privacy in most commercial transactions or interactions comes down
to “notice and choice”, which is ineffective for many reasons including the power
asymmetry and information asymmetry between firms and individuals. In the
machine learning context, the notice and choice approach to privacy is particularly
ineffective as a barrier to firms building models that may infer sensitive attributes
or make adverse decisions based on innocuous attributes. That’s because of the
“tyranny of the minority”: it takes only a small number of individuals to consent to
collection to be able to uncover the statistical patterns that make such inferences
possible.276

While privacy laws have not so far helped to address discrimination, discrim-
ination law has sometimes helped to preserve privacy. The Genetic Information
Nondiscrimination Act is an anti-discrimination law that mutated into a privacy
law through expansive court decisions and EEOC interpretation.277 Genetic infor-
mation is an exception to the ubiquity of proxies, as it cannot readily be inferred
with any degree of completeness or accuracy from observable characteristics.

Broader senses of the word privacy go beyond information flow and encompass
transparency, explanation, and redress. We turn to those next.

Explanation

In the context of automated decision making, explanation could have one of two
goals. The first is an explanation of the overall system. In a rule-based system this
might be the set of decision rules. In a machine learning system it’s less obvious
what form this explanation should take, and it is a subject of active research in the
field of interpretable machine learning.

An explanation of the overall system promotes fairness objectives because it
allows regulators, users, and developers to check whether the system adheres to
normative requirements. In many cases, explanation allows us to immediately spot
potential unfairness. For example, if we know that a system used for detecting fake
accounts on social media relies on an uncommon name as a signal of inauthenticity,
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it is easy to see why it may be more likely to incorrectly flag users who are from
minority cultures, as we discussed in Chapter 1.

The second goal of explanation of how a particular decision was made given
the characteristics of the decision subject. This goal can also promote fairness
objectives. It satisfies a powerful innate need to understand how consequential
decisions about us are made. The dread that arises when a decision system denies
us such explanation is visceral enough that it has a name: Kafkaesque. Explanation
of individual decisions also serves more instrumental purposes. It allows us to
contest decisions that may have been made on the basis of erroneous information.
Even if the decision was accurate, explanation allows recourse, that is, actions that
decision subjects might take to alter the decision in the future. For example, a loan
applicant who was denied because of a low credit score may make attempts to
improve that score.

Taking a step back, decision systems can be analyzed at three levels. The highest
level is that of values, goals, and normative constraints (for example, maximizing
predictive accuracy while ensuring fairness). The second is the design of the
system and its rules. The third is the level of individual decisions. Justification is
needed at all three levels. In traditional decision making systems, values and goals
derive legitimacy through stakeholder participation, deliberation, and democratic
debate. It is often merged with the next step, rulemaking or policymaking, which
is the process of going from the first level to the second—designing a decision
system based on values and goals. If the first step was skipped, tensions between
different values or between different stakeholders’ objectives become apparent in
this process. In administrative bureaucracies, they are resolved through a process
of public participation.278 In contrast, the process of adjudication bridges the second
and the third levels.279 For example, in the United States, bureaucrats periodically
assess the value of homes and other real estate based on an elaborate policy in
order to determine how much property tax should be levied. If the owner disagrees
with the assessment, they can appeal, and have a right to a hearing.

Automated systems erode the procedural protections involved in rulemaking
and adjudication: public participation and appeals respectively.280 These issues
are exacerbated when machine learning is involved, due to its inscrutability and
non-intuitiveness.281 The two goals of explanation might help mitigate these
concerns: by allowing us to understand how the overall system and policy conform
to normative constraints and how individual decisions conform to the policy. These
roughly correspond to the distinction between “global” and “local” interpretability
in the technical literature.

Requirements for both flavors of explanation can be seen in existing laws. The
FCRA and ECOA contain an “adverse action notice” requirement. This is an
example of the second goal, as it pertains only to the individual decision and does
not require transparency about the overall model. In contrast, the GDPR requires
“meaningful information about the logic involved” if an individual is subject to a
consequential decision by an automated system. This is generally understood as
requiring some degree of explanation of both the overall model and the specific
decision.
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Table 6.2: Comparison of the two flavors of model explana-
tion

Explanation of overall system
Explanation of specific
decisions

Goal Justify policy based on goals
and values

Justify decision based on
policy

Bureaucratic
analog

Rulemaking or policymaking Adjudication

Technical tool Global interpretability Local explanation
Example legal
requirement

GDPR: “meaningful
information about the logic
involved”

FCRA and ECOA: adverse
action notice

Selbst and Barocas describe several limitations to the usefulness of explanations.
We highlight two main ones. The first is the difficulty of producing explanations
that are simultaneously faithful to the model and understandable to a nonexpert.
If a credit model combines dozens of variables in nonlinear ways, a reason such
as “length of employment” or “insufficient income” might fall far short of fully
explaining a decision; yet this is all that is required of adverse action notices.
Conversely, an explanation of a decision that is fully faithful to a statistical model
may be incomprehensible to most decision subjects.

There is an important distinction between explanations given willingly and
those demanded by law of a decision maker who has no other incentive to provide
them. So far, it has proven challenging for regulators to set legal requirements
for what constitutes a good explanation and assess whether they are working as
intended. Empirical evidence supports the difficulty of compelling unwilling deci-
sion makers to provide meaningful explanations. For example, a 2018 study found
that Facebook’s “Why am I seeing this?” ad explanations are vague, incomplete,
misleading, and generally useless.282 The research literature shows that if Facebook
wanted to provide good explanations, it is possible to do far better.

A more fundamental limitation described by Selbst and Barocas is that even
explanations that are faithful and understandable may not enable normative assess-
ment. If an employer uses a screening model that computes a score based on some
keywords (a faithful and understandable explanation), it is normatively important
to know whether those keywords represent job-related skills, or act as proxies (for
example, hobbies) that signal social class, or something else. We may be able to
make such an assessment given the keywords, but it is not straightforward. Mod-
ern methods that provide explanations based on high-level concepts rather than
low-level features hold promise in this regard, but the gap between explanations
and a full normative justification is likely to remain.

Because of these limitations, there has been a gradual turn from explanations
to algorithmic impact assessments (AIAs). A full discussion of AIAs is beyond our
scope, but we point out how AIAs, at least in an idealized version, differ from
explanations. First, AIAs go beyond explaining the model itself and focus on how
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it was created, how it will be used, and what impacts it is likely to have. Second,
the primary consumers of AIAs are not decision subjects but rather regulators and
other experts, which alleviates the faithfulness-comprehensibility tradeoff to some
degree. Third, AIAs must be performed before the model is deployed and must be
updated periodically. Some visions of AIAs call for the involvement of impartial
external parties in producing them.

The GDPR incorporates one version of AIAs, namely Data Protection Impact
Assessments (DPIAs). DPIAs must include a description of the algorithm, and the
purpose of the processing, an assessment of the necessity of processing in relation
to the purpose, an assessment of the risks to individual rights and freedoms, and
the measures a company will use to address these risks. It requires consultation
“where appropriate” with impacted individuals. But DPIAs are not required to be
released to the public. It is too early to tell how effective they will be in practice;
much will rely on the behavior of regulators.283, 284

Algorithmic Impact Assessments are closely related to audits and the terms
are sometimes used interchangeably. Nonetheless, there are several types that are
worth distinguishing. A 2020 report classifies them into four categories:285

• Bias audits conducted by researchers, journalists, or civil society organiza-
tions (inspired by social science audits, as we saw in the chapter on testing
discrimination in practice).

• Regulatory audits conducted by regulators with statutory powers to examine
internal data and systems, modeled on financial audits.

• Algorithmic risk assessments conducted by the developer or procurer of a tool,
modeled on environmental impact assessments, to assess possible risks and
mitigation strategies before deploying a system.

• Algorithmic impact evaluations, which are retrospective and modeled on policy
evaluations, conducted typically by public sector agencies w.r.t. algorithms
which implement a policy.

Algorithmic impact assessments and audits are a burgeoning area,286 and
their potential is still being explored. For example, Ifeoma Ajunwa ambitiously
argues for reading in existing employment law a duty of care that would obligate
employers to conduct audits of automated hiring systems.287 Malgieri and Pasquale
propose an ex-ante model of regulation where developers of consequential AI
systems must perform a risk assessment before deployment and, in some cases, be
required to get it approved by an authority[i@malgieri2022transparency]. These
developments illustrate our point that the turn to machine learning, while indeed
creating challenges for antidiscrimination law, also creates opportunities alongside
it. The software tool and data records involved in automated systems provide a
leverage point for regulators.

Consumer protection

Consumer protection law has completely different roots from either antidiscrim-
ination law or privacy law. Consumer movements first gained ground in the
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United States in the early 20th century, initially due to food safety issues.288 The
Federal Trade Commission was established in 1914. Although it initially focused
on antitrust, consumer protection gradually became an equally important prong of
its activities. It has been the primary agency responsible for consumer protection,
and has the statutory authority to challenge “unfair or deceptive” practices in
commerce. It is this authority that the agency uses to carry out the activities that it
is well known for, such as policing false advertising and fraud, especially identity
theft.289 Many states have consumer protection laws with similar import, enforced
by attorneys general.

Credit regulation is one area of consumer protection law that also serves fairness
purposes, understood in a broad sense. The Fair Credit Reporting Act of 1974

narrows the permissible uses of credit reports so that they are not used for arbitrary
purposes. It gives consumers ways to contest inaccuracies in the data, considering
that they are used to make consequential decisions. And it requires notifying the
consumer when adverse action is taken against them. FCRA does not address
discrimination in the sense of disparate treatment or disparate impact; that would
come later, in the Equal Credit Opportunity Act of 1976. In other areas such as
employment law, consumer protection does not currently play a role, although
scholars have speculatively advocated for treating job candidates as consumers.261

Outside the traditional sectors of antidiscrimination law, there is a vast swath
of everyday digital products in which machine learning biases manifest, and this
is where consumer protection law is potentially highly relevant. For example,
if a face unlock feature on a smartphone is substantially less accurate for some
groups of users, this is not a violation of any of the sector-specific statutes we’ve
discussed so far, but it may fall under FTC authority. Even in domains such as
employment discrimination, there are peculiar gaps such as the fact that vendors
of algorithmic screening tools are not covered entities, and consumer protection
law can potentially help fill this gap.

As of this writing, this is all speculative. So far, the FTC hasn’t gone after dis-
criminatory practices except when the company also violates an anti-discrimination
statute such as ECOA, which the FTC has authority to enforce.290 The term “un-
fairness” in the FTC act has traditionally meant something quite different: taking
unjustified advantage of consumers that they cannot avoid. The prototypical ex-
ample of an unfair commercial practice would be selling snake oil, and a more
modern example would be lax data security leading to a data breach. But note
that unlike the anti-discrimination statutes, the FTC has substantially more power
to determine what constitutes deceptive and unfair. It is quite possible that the
agency will take a broad view of unfairness and that the courts will permit it. The
statute allows the FTC to look to “established public policies” in determining what
is unfair. It has been suggested that the FTC can thus look to antidiscrimination
statutes and rules as scaffolding to build a framework for making determinations
about algorithmic discrimination.291

The FTC’s deception authority offers a clearer but more circumscribed option.
Companies often make affirmative claims about their products being unbiased.
If those claims turn out to be false, that’s deception. The same goes for false
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claims about products being effective. This is relevant since many predictive
decision making tools on the market lack evidence of predictive validity, which
means that they may subject people to arbitrary decisions. Yet, unless those
arbitrary decisions are also systematically biased, they are difficult to challenge
under antidiscrimination law. Finally, a lack of transparency may also constitute
a deceptive practice. Indeed, the FTC took action against a company that trained
a face recognition model on its users’ photos while falsely telling them that the
feature was opt-in.292

Historically, the FTC has had a roller-coaster ride in terms of how broadly it
treats its authority and how much it flexes its muscles. After being ineffective
in the ‘60s and reinvigorated in the ’70s,293 Congress rebuked it in the early ’80s
and limited its authority due to lobbying by powerful business interests.289 It has
remained cautious since, and was further caught off guard in the technology era
due to limitations of in-house technical expertise. This led to withering criticism
for failures such as allowing Cambridge Analytica’s exfiltration of Facebook users’
data, despite the FTC long being aware of similar previous events and supposedly
closely monitoring Facebook under a “consent decree”. In the 2020s, the agency has
shown some signs of being invigorated. Specifically on algorithmic discrimination,
it published a blog post containing surprisingly strong language.294 A whitepaper
co-authored by a sitting commissioner also lays out an ambitious agenda.295 All this
is to say: the relevance of consumer protection law to algorithmic discrimination
remains a wild card.

Beyond the traditional conception of consumer protection, there are emerging
ideas such as a duty of loyalty for companies who are entrusted with customers’
data.296 Such companies would be obligated to act in the best interests of people
exposing their data and online experiences. The duty of loyalty is a common
obligation in fiduciary relationships (for example, a lawyer owes such a duty to her
client). But its application to the holders of personal data is a relatively new idea.
Although it has been proposed mainly with the aim of improving privacy and
minimizing manipulative practices such as “dark patterns”, it would have some
implications for nondiscrimination as well.

Concluding thoughts

We’ve covered a lot of ground in this chapter. We reviewed how the various
civil rights movements together gave rise to a relatively robust body of anti-
discrimination law in the U.S. Generally, this law aims to strike a balance between
preventing (and remedying) discrimination on the other hand, and avoiding exces-
sive burdens on decision makers on the other hand. It has been refined, contested,
and implemented over decades by the push and pull of court decisions, regulatory
agencies, institutional bureaucrats, continued civil rights activism, and shifts in
public opinion. It has important limitations: practically, private plaintiffs find it
difficult to find legal recourse; more fundamentally, the law itself is far from an
ideal route to bring about structural changes.
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Turning to the novel challenges raised by automated decision making, there is
a risk that discriminatory machine learning might slip through the gaps in how the
law conceives of discrimination. In our view, this risk is counterbalanced by the
expanded legal toolkit available: privacy law, requirements regarding explanation
and impact assessment, and consumer protection law. So far, this potential has
lain mostly dormant for various reasons: a narrow conception of privacy, a lack of
broad legislation in the U.S. requiring explanation of consequential decisions, and
the timidity of consumer protection agencies. This could yet change; it is possible
that the law and enforcement agencies could be reformed to effectively address
the new problems. At a minimum, even if not enshrined into law, the tools for
intervention that we’ve discussed offer a blueprint for public interest advocates
seeking to hold companies accountable.
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7
Testing discrimination in practice

In previous chapters, we have seen statistical, causal, and normative fairness criteria.
This chapter is about the complexities that arise when we want to apply them in
practice.

A running theme of this book is that there is no single test for fairness, that
is, there is no single criterion that is both necessary and sufficient for fairness.
Rather, there are many criteria that can be used to diagnose potential unfairness or
discrimination.

There’s often a gap between moral notions of fairness and what is measurable
by available experimental or observational methods. This does not mean that we
can select and apply a fairness test based on convenience. Far from it: we need
moral reasoning and domain-specific considerations to determine which test(s) are
appropriate, how to apply them, determine whether the findings indicate wrongful
discrimination, and whether an intervention is called for. We will see examples of
such reasoning throughout this chapter. Conversely, if a system passes a fairness
test, we should not interpret it as a certificate that the system is fair.

In this chapter, our primary objects of study will be real systems rather than
models of systems. We must bear in mind that there are many necessary assump-
tions in creating a model which may not hold in practice. For example, so-called
automated decision making systems rarely operate without any human judgment.
Or, we may assume that a machine learning system is trained on a sample drawn
from the same population on which it makes decisions, which is also almost never
true in practice. Further, decision making in real life is rarely a single decision
point, but rather a cumulative series of small decisions. For example, hiring in-
cludes sourcing, screening, interviewing, selection, and evaluation, and those steps
themselves include many components.297

An important source of difficulty for testing discrimination in practice is that
researchers have a limited ability to observe — much less manipulate — many of
the steps in a real-world system. In fact, we’ll see that even the decision maker
faces limitations in its ability to study the system.

Despite these limitations and difficulties, empirically testing fairness is vital.
The studies that we’ll discuss serve as an existence proof of discrimination and
provide a lower bound of its prevalence. They enable tracking trends in discrimi-
nation over time. When the findings are sufficiently blatant, they justify the need
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for intervention regardless of any differences in interpretation. And when we
do apply a fairness intervention, they help us measure its effectiveness. Finally,
empirical research can also help uncover the mechanisms by which discrimination
takes place, which enables more targeted and effective interventions. This requires
carefully formulating and testing hypotheses using domain knowledge.

The first half of this chapter surveys classic tests for discrimination that were
developed in the context of human-decision making systems. The underlying con-
cepts are just as applicable to the study of fairness in automated systems. Much of
the first half will build on the causality chapter and explain concrete techniques in-
cluding experiments, difference-in-differences, and regression discontinuity. While
these are standard tools in the causal inference toolkit, we’ll learn about the specific
ways in which they can be applied to fairness questions. Then we will turn to the
application of the observational criteria from Chapter 3. The summary table at the
end of the first half lists, for each test, the fairness criterion that it probes, the type
of access to the system that is required, and other nuances and limitations. The
second half of the chapter is about testing fairness in algorithmic decision making,
focusing on issues specific to algorithmic systems.

Two quick points of terminology: We’ll use the terms unfairness and discrimina-
tion roughly synonymously. There is no overarching definition of either term, but
we will make our discussion precise by referring to a specific criterion whenever
possible. We’ll use “system” as a shorthand for a decision-making system, such
as hiring at a company. It may or may not involve any automation or machine
learning.

Part 1: Traditional tests for discrimination

Audit studies

The audit study is a popular technique for diagnosing discrimination. It involves
a study design called a field experiment. “Field” refers to the fact that it is an
experiment on the actual decision making system of interest (in the “field”, as
opposed to a lab simulation of decision making). Experiments on real systems
are hard to pull off. For example, we usually have to keep participants unaware
that they are in an experiment. But field experiments allow us to study decision
making as it actually happens rather than worrying that what we’re discovering
is an artifact of a lab setting. At the same time, the experiment, by carefully
manipulating and controlling variables, allows us to observe a treatment effect,
rather than merely observing a correlation.

How to interpret such a treatment effect is a more tricky question. In our view,
most audit studies, including the ones we’ll describe, are best seen as attempts to
test blindness: whether a decision maker directly uses a sensitive attribute. Recall
that this notion of discrimination is not necessarily a counterfactual in a valid
causal model (Chapter 5). Even as tests of blindness, there is debate about precisely
what it is that they measure, since the researcher can at best signal race, gender,
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or another sensitive attribute. This will become clear when we discuss specific
studies.

Audit studies were pioneered by the US Department of Housing and Urban
Development in the 1970s for the purpose of studying the adverse treatment faced
by minority home buyers and renters.298 They have since been successfully applied
to many other domains.

In one landmark study by Ayres & Siegelman, the researchers recruited 38

testers to visit about 150 car dealerships to bargain for cars, and record the price
they were offered at the end of bargaining.299 Testers visited dealerships in pairs;
testers in a pair differed in terms of race or gender. Both testers in a pair bargained
for the same model of car, at the same dealership, usually within a few days of
each other.

Pulling off an experiment such as this in a convincing way requires careful
attention to detail; here we describe just a few of the many details in the paper. Most
significantly, the researchers went to great lengths to minimize any differences
between the testers that might correlate with race or gender. In particular, all
testers were 28–32 years old, had 3–4 years of postsecondary education, and “were
subjectively chosen to have average attractiveness”. Further, to minimize the risk of
testers’ interaction with dealers being correlated with race or gender, every aspect
of their verbal or nonverbal behavior was governed by a script. For example, all
testers “wore similar ‘yuppie’ sportswear and drove to the dealership in similar
rented cars.” They also had to memorize responses to a long list of questions
they were likely to encounter. All of this required extensive training and regular
debriefs.

The paper’s main finding was a large and statistically significant price penalty
in the offers received by Black testers. For example, Black males received final
offers that were about $1,100 more than White males, which represents a threefold
difference in dealer profits based on data on dealer costs. The analysis in the paper
has alternative target variables (initial offers instead of final offers; percentage
markup instead of dollar offers), alternate model specifications (e.g. to account
the two audits in each pair having correlated noise), and additional controls
(e.g. bargaining strategy). Thus, there are a number of different estimates, but the
core findings remain robust.1

A tempting interpretation of this study is that if two people were identical
except for race, with one being White and the other being Black, then the offers
they should expect to receive would differ by about $1,100. But what does it mean
for two people to be identical except for race? Which attributes about them would
be the same, and which would be different?

With the benefit of the discussion of ontological instability in Chapter 5, we
can understand the authors’ implicit framework for making these decisions. In
our view, they treat race as a stable source node in a causal graph, attempt to hold

1In an experiment such as this where the treatment is randomized, the addition or omission
of control variables in a regression estimate of the treatment effect does not result in an incorrect
estimate, but control variables can explain some of the noise in the observations and thus increase
the precision of the treatment effect estimate, i.e., decrease the standard error of the coefficient.
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constant all of its descendants, such as attire and behavior, in order to estimate the
direct effect of race on the outcome. But what if one of the mechanisms of what we
understand as “racial discrimination” is based on attire and behavior differences?
The social construction of race suggests that this is plausible.300

Note that the authors did not attempt to eliminate differences in accent between
testers. Why not? From a practical standpoint, accent is difficult to manipulate.
But a more principled defense of the authors’ choice is that accent is a part of how
we understand race; a part of what it means to be Black, White, etc., so that even if
the testers could manipulate their accents, they shouldn’t. Accent is subsumed into
the “race” node in the causal graph.

To take an informed stance on questions such as this, we need a deep under-
standing of cultural context and history. They are the subject of vigorous debate in
sociology and critical race theory. Our point is this: the design and interpretation
of audit studies requires taking positions on contested social questions. It may be
futile to search for a single “correct” way to test even the seemingly straightforward
fairness notion of whether the decision maker treats similar individuals similarly
regardless of race. Controlling for a plethora of attributes is one approach. Ar-
guably, it yields lower bounds on the amount of discrimination since it incorporates
a thin conception of race. Another is to simply recruit Black testers and White
testers, have them behave and bargain as would be their natural inclination, and
measure the demographic disparity. Each approach tells us something valuable,
and neither is “better”.2

Another famous audit study by Bertrand & Mullainathan tested discrimination
in the labor market.301 Instead of sending testers in person, the researchers sent in
fictitious resumes in response to job ads. Their goal was to test if an applicant’s
race had an impact on the likelihood of an employer inviting them for an interview.
They signaled race in the resumes by using White-sounding names (Emily, Greg)
or Black-sounding names (Lakisha, Jamal). By creating pairs of resumes that were
identical except for the name, they found that White names were 50% more likely
to result in a callback than Black names. The magnitude of the effect was equivalent
to an additional eight years of experience on a resume.

Despite the study’s careful design, debates over interpretation have inevitably
arisen, primarily due to the use of candidate names as a way to signal race to
employers. Did employers even notice the names in all cases, and might the effect
have been even stronger if they had? Or, can the observed disparities be better
explained based on factors correlated with race, such as a preference for more
common and familiar names, or an inference of higher socioeconomic status for the
candidates with White-sounding names? (Of course, the alternative explanations
don’t make the observed behavior morally acceptable, but they are important to
consider.) Although the authors provide evidence against these interpretations,
debate has persisted. For a discussion of critiques of the validity of audit studies,
see Devah Pager’s survey.302

2In most other domains, say employment, testing demographic disparity would be less valuable,
because there are relevant differences between candidates. Price discrimination is unusual in that
there are no morally salient qualities of buyers that may justify it.
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In any event, like other audit studies, this experiment tests fairness as blindness.
Even simple proxies for race, such as residential neighborhood, were held constant
between matched pairs of resumes. Thus, the design likely underestimates the
extent to which morally irrelevant characteristics affect callback rates in practice.
This is just another way to say that attribute flipping does not generally produce
counterfactuals that we care about, and it is unclear if the effect sizes measured
have any meaningful interpretation that generalizes beyond the context of the
experiment.

Rather, as Issa Kohler-Hausmann argues, audit studies are valuable because they
trigger a strong and valid moral intuition.303 They also serve a practical purpose:
when designed well, they illuminate the mechanisms that produce disparities and
help guide interventions. For example, the car bargaining study concluded that
the preferences of owners of dealerships don’t explain the observed discrimination,
that the preferences of other customers may explain some of it, and strong evidence
that dealers themselves (rather than owners or customers) are the primary source
of the observed discrimination.

Resume-based audit studies, also known as correspondence studies, have been
widely replicated. We briefly present some major findings, with the caveat that
there may be publication biases. For example, studies finding no evidence of an
effect are in general less likely to be published. Alternately, published null findings
might reflect poor experiment design, or might simply indicate that discrimination
is only expressed in certain contexts.

A 2016 survey by Bertrand and Duflo lists 30 studies from 15 countries covering
nearly all continents revealing pervasive discrimination against racial and ethnic
minorities.304 The method has also been used to study discrimination based on
gender, sexual orientation, and physical appearance.304 It has also been used
outside the labor market, in retail and academia.304 Finally, trends over time
have been studied: a meta-analysis found no change in racial discrimination in
hiring against African Americans from 1989 to 2015. There was some indication
of declining discrimination against Latinx Americans, although the data on this
question was sparse.305

Collectively, audit studies have helped nudge the academic and policy debate
away from the naive view that discrimination is a concern of a bygone era. From
a methodological perspective, our main takeaway from the discussion of audit
studies is the complexity of defining and testing blindness.

Testing the impact of blinding

In some situations, it is not possible to test blindness by randomizing the decision
maker’s perception of race, gender, or other sensitive attribute. For example,
suppose we want to test if there’s gender discrimination in peer review in a
particular research field. Submitting real papers with fictitious author identities
may result in the reviewer attempting to look up the author and realizing the
deception. A design in which the researcher changes author names to those of real
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people is even more problematic.
There is a slightly different strategy that’s more viable: an editor of a scholarly

journal in the research field could conduct an experiment in which each paper
received is randomly assigned to be reviewed in either a single-blind fashion (in
which the author identities are known to the referees) or double-blind fashion (in
which author identities are withheld from referees). Indeed, such experiments have
been conducted,306 but in general even this strategy can be impractical.

At any rate, suppose that a researcher has access to only observational data on
journal review policies and statistics on published papers. Among ten journals in
the research field, some introduced double-blind review, and did so in different
years. The researcher observes that in each case, right after the switch, the fraction
of female-authored papers rose, whereas there was no change for the journals
that stuck with single-blind review. Under certain assumptions, this enables
estimating the impact of double-blind reviewing on the fraction of accepted papers
that are female-authored. This hypothetical example illustrates the idea of a
“natural experiment”, so called because experiment-like conditions arise due to
natural variation. Specifically, the study design in this case is called differences-
in-differences. The first “difference” is between single-blind and double-blind
reviewing, and the second “difference” is between journals (row 2 in the summary
table).

Differences-in-differences is methodologically nuanced, and a full treatment
is beyond our scope.307 We briefly note some pitfalls. There may be unobserved
confounders: perhaps the switch to double-blind reviewing at each journal hap-
pened as a result of a change in editorship, and the new editors also instituted
policies that encouraged female authors to submit strong papers. There may also
be spillover effects (which violates the Stable Unit Treatment Value Assumption): a
change in policy at one journal can cause a change in the set of papers submitted
to other journals. Outcomes are serially correlated (if there is a random fluctuation
in the gender composition of the research field due to an entry or exodus of some
researchers, the effect will last many years). This complicates the computation of
the standard error of the estimate.308 Finally, the effect of double blinding on the
probability of acceptance of female-authored papers (rather than on the fraction of
accepted papers that are female authored) is not identifiable using this technique
without additional assumptions or controls.

Even though testing the impact of blinding sounds similar to testing blindness,
there is a crucial conceptual and practical difference. Since we are not asking a
question about the impact of race, gender, or another sensitive attribute, we avoid
running into ontological instability. The researcher doesn’t need to intervene on
the observable features by constructing fictitious resumes or training testers to use
a bargaining script. Instead, the natural variation in features is left unchanged;
the study involves real decision subjects. The researcher only intervenes on the
decision making procedure (or exploits natural variation) and evaluates the impact
of that intervention on groups of candidates defined by the sensitive attribute A.
Thus, A is not a node in a causal graph, but merely a way to split the units into
groups for analysis. Questions of whether the decision maker actually inferred
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the sensitive attribute or merely a feature correlated with it are irrelevant to the
interpretation of the study. Further, the effect sizes measured do have a meaning
that generalizes to scenarios beyond the experiment. For example, a study tested
the effect of “resume whitening”, in which minority applicants deliberately conceal
cues of their racial or ethnic identity in job application materials to improve their
chances of getting a callback.309 The effects reported in the study are meaningful
to job seekers who engage in this practice.

Revealing extraneous factors in decisions

Sometimes natural experiments can be used to show the arbitrariness of decision
making rather than unfairness in the sense of non-blindness (row 3 in the summary
table). Recall that arbitrariness is one type of unfairness that we are concerned about
in this book (Chapter 2). Arbitrariness may refer to the lack of a uniform decision
making procedure or to the incursion of irrelevant factors into the procedure.

For example, a study looked at decisions made by judges in Louisiana juvenile
courts, including sentence lengths.310 It found that in the week following an upset
loss suffered by the Louisiana State University (LSU) football team, judges imposed
sentences that were 7% longer on average. The impact was greater for Black
defendants. The effect was driven entirely by judges who got their undergraduate
degrees at LSU, suggesting that the effect is due to the emotional impact of the
loss. For readers unfamiliar with the culture of college football in the United States,
the paper helpfully notes that “Describing LSU football just as an event would be a
huge understatement for the residents of the state of Louisiana.”

Another well-known study by Danziger et al. on the supposed unreliability of
judicial decisions is in fact a poster child for the danger of confounding variables in
natural experiments. The study tested the relationship between the order in which
parole cases are heard by judges and the outcomes of those cases.311 It found that
the percentage of favorable rulings started out at about 65% early in the day before
gradually dropping to nearly zero right before the judges’ food break, returned to
~65% after the break, with the same pattern repeated for the following food break!
The authors suggested that judges’ mental resources are depleted over the course
of a session, leading to poorer decisions. It quickly became known as the “hungry
judges” study and has been widely cited as an example of the fallibility of human
decision makers.

The finding would be extraordinary if the order of cases was truly random. In
fact, it would be so extraordinary that it has been argued that the study should be
dismissed simply based on the fact that the effect size observed is far too large to
be caused by psychological phenomena such as judges’ attention.312

The authors were well aware that the order wasn’t random, and performed
a few tests to see if it is associated with factors pertinent to the case (since those
factors might also impact the probability of a favorable outcome in a legitimate way).
They did not find such factors. But it turned out they didn’t look hard enough. A
follow-up investigation revealed multiple confounders and potential confounders,
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Figure 7.1: Fraction of favorable rulings over the course of a day. The dotted lines
indicate food breaks. From Danziger et al.

including the fact that prisoners without an attorney are presented last within each
session, and tend to prevail at a much lower rate.313 This invalidates the conclusion
of the original study.

Testing the impact of decisions and interventions

An underappreciated aspect of fairness in decision making is the impact of the
decision on the decision subject. In our prediction framework, the target variable
(Y) is not impacted by the score or prediction (R). But this is not true in practice.
Banks set interest rates for loans based on the predicted risk of default, but setting
a higher interest rate makes a borrower more likely to default. The impact of the
decision on the outcome is a question of causal inference.

There are other important questions we can ask about the impact of decisions.
What is the utility or cost of a positive or negative decision to different decision
subjects (and groups)? For example, admission to a college may have a different
utility to different applicants based on the other colleges where they were or weren’t
admitted. Decisions may also have effects on people who are not decision sub-
jects. For instance, incarceration impacts not just individuals but communities.169

Measuring these costs allows us to be more scientific about setting decision thresh-
olds and adjusting the tradeoff between false positives and negatives in decision
systems.

One way to measure the impact of decisions is via experiments, but again, they
can be infeasible for legal, ethical, and technical reasons. Instead, we highlight
a natural experiment design for testing the impact of a decision — or a fairness
intervention — on the candidates, called regression discontinuity (row 4 in the
summary table).

Suppose we’d like to test if a merit-based scholarship program for first-
generation college students has lasting beneficial effects — say, on how much
they earn after college. We cannot simply compare the average salary of stu-
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dents who did and did not win the scholarship, as those two variables may be
confounded by intrinsic ability or other factors. But suppose the scholarships
were awarded based on test scores, with a cutoff of 85%. Then we can compare
the salary of students with scores of 85% to 86% (and thus were awarded the
scholarship) with those of students with scores of 84% to 85% (and thus were not
awarded the scholarship). We may assume that within this narrow range of test
scores, scholarships are awarded essentially randomly. For example, if the variation
(standard error) in test scores for students of identical ability is 5 percentage points,
then the difference between 84% and 86% is of minimal significance. Thus we can
estimate the impact of the scholarship as if we did a randomized controlled trial.

We need to be careful, though. If we consider too narrow a band of test scores
around the threshold, we may end up with insufficient data points for inference. If
we consider a wider band of test scores, the students in this band may no longer
be exchangeable units for the analysis.

Another pitfall arises because we assumed that the set of students who receive
the scholarship is precisely those that are above the threshold. If this assumption
fails, it immediately introduces the possibility of confounders. Perhaps the test
score is not the only scholarship criterion, and income is used as a secondary
criterion. Or, some students offered the scholarship may decline it because they
already received another scholarship. Other students may not avail of the offer
because the paperwork required to claim it is cumbersome. If it is possible to take
the test multiple times, wealthier students may be more likely to do so until they
meet the eligibility threshold.

Purely observational tests

The final category of quantitative tests for discrimination is purely observational.
When we are not able to do experiments on the system of interest, nor have the
conditions that enable quasi-experimental studies, there are still many questions
we can answer with purely observational data.

One question that is often studied using observational data is whether the
decision maker used the sensitive attribute; this can be seen as a loose analog of
audit studies. This type of analysis is often used in the legal analysis of disparate
treatment, although there is a deep and long-standing legal debate on whether and
when explicit consideration of the sensitive attribute is necessarily unlawful.314

The most common way to do this is to use regression analysis to see if attributes
other than the protected attributes can collectively “explain” the observed deci-
sions315 (row 5 in the summary table). If they don’t, then the decision maker must
have used the sensitive attribute. However, this is a brittle test. As discussed in
Chapter 3, given a sufficiently rich dataset, the sensitive attribute can be recon-
structed using the other attributes. It is no surprise that attempts to apply this
test in a legal context can turn into dueling expert reports, as seen in the SFFA
vs. Harvard case discussed in Chapter 5.

We can of course try to go deeper with observational data and regression
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analysis. To illustrate, consider the gender pay gap. A study might reveal that
there is a gap between genders in wage per hour worked for equivalent positions
in a company. A rebuttal might claim that the gap disappears after controlling
for college GPA and performance review scores. Such studies can be seen as tests
for conditional demographic parity (row 6 in the summary table). Note that this
requires strong assumptions about the functional form of the relationship between
the independent variables and the target variable.

It can be hard to make sense of competing claims based on regression analysis.
Which variables should we control for, and why? There are two ways in which we
can put these observational claims on a more rigorous footing. The first is to use a
causal framework to make our claims more precise. In this case, causal modeling
might alert us to unresolved questions: why do performance review scores differ
by gender? What about the gender composition of different roles and levels of
seniority? Exploring these questions may reveal unfair practices. Of course, in this
instance the questions we raised are intuitively obvious, but other cases may be
more intricate.

The second way to go deeper is to apply our normative understanding of
fairness to determine which paths from gender to wage are morally problematic. If
the pay gap is caused by the (well-known) gender differences in negotiating for
pay raises, does the employer bear the moral responsibility to mitigate it? This is,
of course, a normative and not a technical question.

Outcome-based tests

So far in this chapter we’ve presented many scenarios — screening job candidates,
peer review, parole hearings — that have one thing in common: while they all
aim to predict some outcome (job performance, paper quality, recidivism), the
researcher does not have access to data on the true outcomes.

Lacking ground truth, the focus shifts to the observable characteristics at
decision time, such as job qualifications. A persistent source of difficulty in these
settings is for the researcher to construct two sets of samples that differ only in the
sensitive attribute and not in any of the relevant characteristics. This is often an
untestable assumption. Even in an experimental setting such as a resume audit
study, there is substantial room for different interpretations: did employers infer
race from names, or socioeconomic status? And in observational studies, the
findings might turn out to be invalid because of unobserved confounders (such as
in the hungry judges study).

But if outcome data are available, then we can do at least one test of fairness
without needing any of the observable features (other than the sensitive attribute):
specifically, we can test for sufficiency, which requires that the true outcome be
conditionally independent of the sensitive attribute given the prediction (Y ⊥ A|R).
For example, in the context of lending, if the bank’s decisions satisfy sufficiency,
then among applicants in any narrow interval of predicted probability of default
(R), we should find the same rate of default (Y) for applicants of any group (A).

Typically, the decision maker (the bank) can test for sufficiency, but an external
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Figure 7.2: Hypothetical probability density of loan default for two groups, women
(solid line) and men (dashed line).

researcher cannot, since the researcher only gets to observe Ŷ and not R (i.e.,
whether or not the loan was approved). Such a researcher can test predictive
parity rather than sufficiency. Predictive parity requires that the rate of default
(Y) for favorably classified applicants (Ŷ = 1) of any group (A) be the same. This
observational test is called the outcome test (row 7 in the summary table).

Here is a tempting argument based on the outcome test: if one group (say
women) who receive loans have a lower rate of default than another (men), it
suggests that the bank applies a higher bar for loan qualification for women.
Indeed, this type of argument was the original motivation behind the outcome test.
But it is a logical fallacy; sufficiency does not imply predictive parity (or vice versa).
To see why, consider a thought experiment involving the Bayes optimal predictor.
In the hypothetical figure below, applicants to the left of the vertical line qualify
for the loan. Since the area under the curve to the left of the line is concentrated
further to the right for men than for women, men who receive loans are more likely
to default than women. Thus, the outcome test would reveal that predictive parity
is violated, whereas it is clear from the construction that sufficiency is satisfied,
and the bank applies the same bar to all groups.

This phenomenon is called infra-marginality, i.e., the measurement is aggregated
over samples that are far from the decision threshold (margin). If we are indeed
interested in testing sufficiency (equivalently, whether the bank applied the same
threshold to all groups), rather than predictive parity, this is a problem. To address
it, we can somehow try to narrow our attention to samples that are close to the
threshold. This is not possible with (Ŷ, A, Y) alone: without knowing R, we don’t
know which instances are close to the threshold. However, if we also had access to
some set of features X′ (which need not coincide with the set of features X observed
by the decision maker), it becomes possible to test for violations of sufficiency. The
threshold test is a way to do this (row 8 in the summary table). A full description
is beyond our scope.316 One limitation is that it requires a model of the joint
distribution of (X′, A, Y) whose parameters can be inferred from the data, whereas
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the outcome test is model-free.
While we described infra-marginality as a limitation of the outcome test, it can

also be seen as a benefit. When using a marginal test, we treat the distribution of
applicant characteristics as a given, and miss the opportunity to ask: why are some
individuals so far from the margin? Ideally, we can use causal inference to answer
this question, but when the data at hand don’t allow this, non-marginal tests might
be a useful starting point for diagnosing unfairness that originates “upstream” of
the decision maker. Similarly, error rate disparity, to which we will now turn, while
crude by comparison to more sophisticated tests for discrimination, attempts to
capture some of our moral intuitions for why certain disparities are problematic.

Separation and selective labels

Recall that separation is defined as R ⊥ A|Y. At first glance, it seems that there is a
simple observational test analogous to our test for sufficiency (Y ⊥ A|R). However,
this is not straightforward, even for the decision maker, because outcome labels can
be observed only for some of the applicants (i.e. the ones who received favorable
decisions). Trying to test separation using this sample suffers from selection bias.
This is an instance of what is called the selective labels problem. The issue also affects
the computation of false positive and false negative rate parity, which are binary
versions of separation.

More generally, the selective labels problem is the issue of selection bias in
evaluating decision making systems due to the fact that the very selection process
we wish to study determines the sample of instances that are observed. It is not
specific to the issue of testing separation or error rates: it affects the measurement
of other fundamental metrics such as accuracy as well. It is a serious and often
overlooked issue that has been the subject of some study.317

One way to get around this barrier is for the decision maker to employ an
experiment in which some sample of decision subjects receive positive decisions
regardless of the prediction (row 9 in the summary table). However, such experi-
ments raise ethical concerns and are rarely done in practice. In machine learning,
some experimentation is necessary in settings where there does not exist offline
data for training the classifier, which must instead simultaneously learn and make
decisions.318

One scenario where it is straightforward to test separation is when the “pre-
diction” is not actually a prediction of a future event, but rather when machine
learning is used for automating human judgment, such as harassment detection in
online comments. In these applications, it is indeed possible and important to test
error rate parity.

Summary of traditional tests and methods
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Legend:

• := indicates intervention on some variable (that is, X := does not represent a
new random variable but is simply an annotation describing how X is used
in the test)

• ∼ natural variation in some variable exploited by the researcher
• A-exp exposure of a signal of the sensitive attribute to the decision maker
• W a feature that is considered irrelevant to the decision
• X′ a set of features which may not coincide with those observed by the

decision maker|
• Y′ an outcome that may or may not be the one that is the target of prediction|

Taste-based and statistical discrimination

We have reviewed several methods of detecting discrimination but we have not
addressed the question of why discrimination happens. A long-standing way to try
to answer this question from an economic perspective is to classify discrimination
as taste-based or statistical. A taste-based discriminator is motivated by an irrational
animus or prejudice for a group. As a result, they are willing to make sub-optimal
decisions by passing up opportunities to select candidates from that group, even
though they will incur a financial penalty for doing so. This is the classic model of
discrimination in labor markets introduced by Gary Becker in 1957.319

A statistical discriminator, in contrast, aims to make optimal predictions about
the target variable using all available information, including the protected attribute.
This theory was developed in the early 1970s by Edmund Phelps and Kenneth
Arrow among others.320, 321 In the simplest model of statistical discrimination, two
conditions hold: first, the distribution of the target variable differs by group. The
usual example is of gender discrimination in the workplace, involving an employer
who believes that women are more likely to take time off due to pregnancy
(resulting in lower job performance). The second condition is that the observable
characteristics do not allow a perfect prediction of the target variable, which is
essentially always the case in practice. Under these two conditions, the optimal
prediction will differ by group even when the relevant characteristics are identical.
In this example, the employer would be less likely to hire a woman than an equally
qualified man. There’s a nuance here: from a moral perspective we would say
that the employer above discriminates against all female candidates. But under
the definition of statistical discrimination, the employer only discriminates against
the female candiates who would not have taken time off if hired (and in fact
discriminates in favor of the female candidates who would take time off if hired).

While some authors put much weight understanding discrimination based
on the taste-based vs. statistical categorization, we will de-emphasize it in this
book. Several reasons motivate our choice. First, since we are interested in
extracting lessons for statistical decision making systems, the distinction is not that
helpful: such systems will not exhibit taste-based discrimination unless prejudice

184



is explicitly programmed into them (while that is certainly a possibility, it is not a
primary concern of this book).

Second, there are practical difficulties in distinguishing between taste-based and
statistical discrimination. Often, what might seem to be a “taste” for discrimination
is simply the result of an imperfect understanding of the decision-maker’s infor-
mation and beliefs. For example, at first sight the findings of the car bargaining
study may look like a clear-cut case of taste-based discrimination. But maybe the
dealer knows that different customers have different access to competing offers
and therefore have different willingness to pay for the same item. Then, the dealer
uses race as a proxy for this amount (correctly or not). In fact, the paper provides
tentative evidence towards this interpretation. The reverse is also possible: if the
researcher does not know the full set of features observed by the decision maker,
taste-based discrimination might be mischaracterized as statistical discrimination.

Third, many of the fairness questions of interest to us, such as structural
discrimination, don’t map to either of these criteria (as they only consider causes
that are relatively proximate to the decision point). We will discuss structural
discrimination in Chapter 8.

Finally, it’s also worth noting that thinking about discrimination in terms of the
dichotomy of taste-based and statistical is associated with the policy position that
fairness interventions are unnecessary. In this view, firms that practice taste-based
discrimination will go out of business. As for statistical discrimination, it is argued
to be either justified, or futile to proscribe because firms will find workarounds.
For example, laws restricting employers from asking about applicants’ criminal
history resulted in employers using race as a proxy for it.322

Of course, that’s not necessarily a reason to avoid discussing taste-based and
statistical discrimination, as the policy position in no way follows from the technical
definitions and models themselves; it’s just a relevant caveat for the reader who
might encounter these dubious arguments in other sources.

Although we de-emphasize this distinction, we consider it critical to study the
sources and mechanisms of discrimination. This helps us design effective and well-
targeted interventions. For example, several studies (including the car bargaining
study) test whether the source of discrimination lies in the owner, employees, or
customers.

An example of a study that can be difficult to interpret without understanding
the mechanism is a 2015 resume-based audit study that revealed a 2:1 faculty
preference for women for STEM tenure-track positions.323 Consider the range
of possible explanations: animus against men; a desire to compensate for past
disadvantage suffered by women in STEM fields; a preference for a more diverse
faculty (assuming that the faculties in question are currently male dominated); a
response to financial incentives for diversification frequently provided by universi-
ties to STEM departments; and an assumption by decision makers that due to prior
descrimination, a female candidate with an equivalent CV to a male candidate is
of greater intrinsic ability. Note that if this assumption is correct, then a preference
for female candidates is accuracy maximizing (as a predictor of career success). It
is also required by some fairness criteria, such as counterfactual fairness.
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To summarize, rather than a one-size-fits-all approach to understanding mecha-
nisms such as taste-based vs statistical discrimination, more useful is a nuanced
and domain-specific approach where we formulate hypotheses in part by studying
decision making processes and organizations, especially in a qualitative way. Let
us now turn to those studies.

Studies of decision making processes and organizations

One way to study decision making processes is through surveys of decision makers
or organizations. Sometimes such studies reveal blatant discrimination, such as
strong racial preferences by employers.324 Over the decades, however, such overt
attitudes have become less common, or at least less likely to be expressed.325

Discrimination tends to operate in more subtle, indirect, and covert ways.
Ethnographic studies excel at helping us understand covert discrimination.

Ethnography is one of the main research methods in the social sciences and is
based on the idea of the researcher being embedded among the research subjects
for an extended period of time as they go about their daily activities. It is a set of
qualitative methods that are complementary to and symbiotic with quantitative
ones. Ethnography allows us to ask questions that are deeper than quantitative
methods permit and to produce richly detailed accounts of culture. It also helps
formulate hypotheses that can be tested quantitatively.

A good illustration is the book Pedigree by Lauren Rivera which examines hiring
practices in a set of elite consulting, banking, and law firms.326 These firms together
constitute the majority of the highest-paying and most desirable entry-level jobs for
college graduates. The author used two standard ethnographic research methods.
The first is a set of 120 interviews in which she presented as a graduate student
interested in internship opportunities. The second method is called participant
observation: she worked in an unpaid Human Resources position at one of the
firms for 9 months, after obtaining consent to use her observations for research.
There are several benefits to the researcher becoming a participant in the culture:
it provides a greater level of access, allows the researcher to ask more nuanced
questions, and makes it more likely that the research subjects would behave as they
would when not being observed.

Several insights from the book are relevant to us. First, the hiring process
has about nine stages, including outreach, recruitment events, screening, multiple
rounds of interviews and deliberations, and “sell” events. This highlights why any
quantitative study that focuses on a single slice of the process (say, evaluation of
resumes) is limited in scope. Second, the process bears little resemblance to the
ideal of predicting job performance based on a standardized set of attributes, albeit
noisy ones, that we described in Chapter 1. Interviewers pay a surprising amount
of attention to attributes that should be irrelevant or minimally relevant, such as
leisure activities, but which instead serve as markers of class. Applicants from
privileged backgrounds are more likely to be viewed favorably, both because they
are able to spare more time for such activities, and because they have the insider
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knowledge that these seemingly irrelevant attributes matter in recruitment. The
signals that firms do use as predictors of job performance, such as admission to
elite universities — the pedigree in the book’s title — are also highly correlated with
socioeconomic status. The authors argue that these hiring practices help explain
why elite status is perpetuated in society along hereditary lines. In our view, the
careful use of statistical methods in hiring, despite their limits, may mitigate the
strong social class based preferences exposed in the book.

Another book, Inside Graduate Admissions by Julie Posselt, focuses on education
rather than labor market.327 It resulted from the author’s observations of decision
making by graduate admissions committees in nine academic disciplines over two
years. A striking theme that pervades this book is the tension between formalized
and holistic decision making. For instance, committees arguably over-rely on GRE
scores despite stating that they consider their predictive power to be limited. As
it turns out, one reason for the preference for GRE scores and other quantitative
criteria is that they avoid the difficulties of subjective interpretation associated with
signals such as reference letters. This is considered valuable because it minimizes
tensions between faculty members in the admissions process. On the other hand,
decision makers are implicitly aware (and occasionally explicitly articulate) that
if admissions criteria are too formal, then some groups of applicants — notably,
applicants from China — would be successful at a far greater rate, and this is
considered undesirable. This motivates a more holistic set of criteria, which often
include idiosyncratic factors such as an applicant’s hobby being considered “cool”
by a faculty member. The author argues that admissions committees use a facially
neutral set of criteria, characterized by an almost complete absence of explicit,
substantive discussion of applicants’ race, gender, or socioeconomic status, but
which nonetheless perpetuates inequities. For example, there is a reluctance to
take on students from underrepresented backgrounds whose profiles suggest that
they would benefit from more intensive mentoring.

This concludes the first part of the chapter. Now let us turn to algorithmic
systems. The background we’ve built up so far will prove useful. In fact, the
traditional tests of discrimination are just as applicable to algorithmic systems. But
we will also encounter many novel issues.

Part 2: Testing discrimination in algorithmic systems

An early example of discrimination in an algorithmic system is from the 1950s. In
the United States, applicants for medical residency programs provide a ranked
list of their preferred hospital programs to a centralized system, and hospitals
likewise rank applicants. A matching algorithm takes these preferences as input
and produces an assignment of applicants to hospitals that optimizes mutual
desirability.3

3Specifically, it satisfies the requirement that if applicant A is not matched to hospital H, then
either A matched to a hospital that he ranked higher than H, or H matched to a set of applicants all
of whom it ranked higher than A.
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Early versions of the system discriminated against couples who wished to
stay geographically close, because couples could not accurately express their joint
preferences: for example, each partner might prefer a hospital over all others
but only if the other partner also matched to the same hospital.328, 43 This is a
non-comparative notion of discrimination: the system does injustice to an applicant
(or a couple) when it does not allow them to express their preferences, regardless
of how other applicants are treated. Note that none of the tests for fairness that we
have discussed are capable of detecting this instance of discrimination, as it arises
because of dependencies between pairs of units, which is not something we have
modeled.

There was a crude attempt in the residency matching system to capture joint
preferences, involving designating one partner in each couple as the “leading
member”; the algorithm would match the leading member without constraints
and then match the other member to a proximate hospital if possible. Given the
prevailing gender norms at that time, it is likely that this method had a further
discriminatory impact on women in heterosexual couples.

Despite these early examples, it is the 2010s that testing unfairness in real-world
algorithmic systems has become a pressing concern and a distinct area of research.
This work has much in common with the social science research that we reviewed,
but the targets of research have expanded considerably. In the rest of this chapter,
we will review and attempt to systematize the research methods in several areas of
algorithmic decision making: various applications of natural-language processing
and computer vision; ad targeting platforms; search and information retrieval tools;
and online markets (ride hailing, vacation rentals, etc). Much of this research has
focused on drawing attention to the discriminatory effects of specific, widely-used
tools and platforms at specific points in time. While that is a valuable goal, we
will aim to highlight broader, generalizable themes in our review. We will close
the chapter by identifying common principles and methods behind this body of
research.

Fairness considerations in applications of natural language processing

One of the most central tasks in NLP is language identification: determining the
language that a given text is written in. It is a precursor to virtually any other
NLP operation on the text such as translation to the user’s preferred language
on social media platforms. It is considered a more-or-less solved problem, with
relatively simple models based on n-grams of characters achieving high accuracies
on standard benchmarks, even for short texts that are a few words long.

However, a 2016 study showed that a widely used tool, langid.py, which
incorporates a pre-trained model, had substantially more false negatives for tweets
written in African-American English (AAE) compared to those written in more
common dialectal forms: 13.2% of AAE tweets were classified as non-English
compared to 7.6% of “White-aligned” English tweets. AAE is a set of English
dialects commonly spoken by Black people in the United States (of course, there
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is no implication that all Black people in the United States primarily speak AAE
or even speak it at all)4. The authors’ construction of the AAE and White-aligned
corpora themselves involved machine learning as well as validation based on
linguistic expertise; we will defer a full discussion to the Measurement chapter.
The observed error rate disparity is likely a classic case of underrepresentation in
the training data.

Unlike the audit studies of car sales or labor markets discussed earlier, here it
is not necessary (or justifiable) to control for any features of the texts, such as the
level of formality. While it may certainly be possible to “explain” disparate error
rates based on such features, that is irrelevant to the questions of interest in this
context, such as whether NLP tools will perform less well for one group of users
compared to another.

NLP tools range in their application from aids to online interaction to com-
ponents of decisions with major career consequences. In particular, NLP is used
in predictive tools for screening of resumes in the hiring process. There is some
evidence of potential discriminatory impacts of such tools, both from employers
themselves330 and from applicants,331 but it is limited to anecdotes. There is also
evidence from the lab experiments on the task of predicting occupation from online
biographies.332

We briefly survey other findings. Automated essay grading software tends to
assign systematically lower scores to some demographic groups333 compared to
human graders, whose scores may themselves be discriminatory.334 Hate speech
detection models use markers of dialect as predictors of toxicity, according to a lab
study,335 resulting in discrimination against minority speakers. Many sentiment
analysis tools assign systematically different scores to text based on race-aligned or
gender-aligned names of people mentioned in the text.336 Speech-to-text systems
perform worse for speakers with certain accents.337 In all these cases, the author or
speaker of the text is potentially harmed. In other NLP systems, i.e., those involving
natural language generation or translation, there is a different type of fairness
concern, namely the generation of text reflecting cultural prejudices resulting in
representational harm to a group of people.338 The table below summarizes this
discussion.

There is a line of research on cultural stereotypes reflected in word embeddings.
Word embeddings are representations of linguistic units; they do not correspond
to any linguistic or decision-making task. As such, lacking any notion of ground
truth or harms to people, it is not meaningful to ask fairness questions about word
embeddings without reference to specific downstream tasks in which they might
be used. More generally, it is meaningless to ascribe fairness as an attribute of
models as opposed to actions, outputs, or decision processes.

4For a treatise on AAE, see.329 The linguistic study of AAE highlights the complexity and internal
consistency of its grammar, vocabulary, and other distinctive features, and refutes the basis of
prejudiced views of AAE as inferior to standard English.
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Demographic disparities and questionable applications of computer
vision

Like NLP, computer vision technology has made major headway in the 2010s due
to the availability of large-scale training corpora and improvements in hardware for
training neural networks. Today, many types of classifiers are used in commercial
products to analyze images and videos of people. Unsurprisingly, they often exhibit
disparities in performance based on gender, race, skin tone, and other attributes,
as well as deeper ethical problems.

A prominent demonstration of error rate disparity comes from Buolamwini
and Gebur’s analysis of three commercial tools designed to classify a person’s
gender as female or male based on an image, developed by Microsoft, IBM, and
Face++ respectively.339 The study found that all three classifiers perform better on
male faces than female faces (8.1% – 20.6% difference in error rate). Further, all
perform better on lighter faces than darker faces (11.8% – 19.2% difference in error
rate), and worst on darker female faces (20.8% – 34.7% error rate). Finally, since all
classifiers treat gender as binary, the error rate for people of nonbinary gender can
be considered to be 100%.

If we treat the classifier’s target variable as gender and the sensitive attribute
as skin tone, we can decompose the observed disparities into two separate issues:
first, female faces are classified as male more often than male faces are classified as
female. This can be addressed relatively easily by recalibrating the classification
threshold without changing the training process. The second and deeper issue is
that darker faces are misclassified more often than lighter faces.

Image classification tools have found it particularly challenging to achieve
geographic equity due to the skew in training datasets. A 2019 study evaluated
five popular object recognition services on images of household objects from 54

countries.340 It found significant accuracy disparities between countries, with
images from lower-income countries being less accurately classified. The authors
point out that household objects such as dish soap or spice containers tend to
look very different in different countries. These issues are exacerbated when
images of people are being classified. A 2017 analysis found that models trained
on ImageNet and Open Images, two prominent datasets for object recognition,
performed dramatically worse at recognizing images of bridegrooms from countries
such as Pakistan and India compared to those from North American and European
countries (the former were often classified as chain mail, a type of armor).341

Several other types of unfairness are known through anecdotal evidence in
image classification and face recognition systems. At least two different image
classification systems are known to have applied demeaning and insulting labels to
photos of people.342, 343 Face recognition systems have been anecdotally reported
to exhibit the cross-race effect wherein they are more likely to confuse faces of
two people who are from a racial group that is underrepresented in the training
data.344 This possibility was shown in a simple linear model of face recognition as
early as 1991.345 Many commercial products have had difficulty detecting faces of
darker-skinned people.346, 347 Similar results are known from lab studies of publicly
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available object detection models.348

More broadly, computer vision techniques seem to be particularly prone to
use in ways that are fundamentally ethically questionable regardless of accuracy.
Consider gender classification: while Microsoft, IBM, and Face++ have worked to
mitigate the accuracy disparities discussed above, a more important question is
why build a gender classification tool in the first place. By far the most common
application appears to be displaying targeted advertisements based on inferred
gender (and many other inferred characteristics, including age, race, and current
mood) in public spaces, such as billboards, stores, or screens in the back seats
of taxis. We won’t recap the objections to targeted advertising here, but it is an
extensively discussed topic, and the practice is strongly opposed by the public, at
least in the United States.349

Morally dubious computer vision technology goes well beyond this example,
and includes apps that “beautify” images of users’ faces, i.e., edit them to better
conform to mainstream notions of attractiveness; emotion recognition, which has
been alleged to be a pseudoscience; and the analysis of video footage for cues such
as body language for screening job applicants.350

Search and recommendation systems: three types of harms

Search engines, social media platforms, and recommendation systems have differ-
ent goals and underlying algorithms, but they do have many things in common
from a fairness perspective. They are not decision systems and don’t provide
or deny people opportunities, at least not directly. Instead, there are (at least)
three types of disparities and attendant harms that may arise in these systems.
First, they may serve the informational needs of some consumers (searchers or
users) better than others. Second, they may create inequities among producers
(content creators) by privileging certain content over others. Third, they may create
representational harms by amplifying and perpetuating cultural stereotypes. There
are a plethora of other ethical concerns about information platforms, such as the
potential to contribute to the political polarization of society. However, we will
limit our attention to harms that can be considered to be forms of discrimination.

Unfairness to consumers. An illustration of unfairness to consumers comes from
a study of collaborative filtering recommender systems that used theoretical and
simulation methods (rather than a field study of a deployed system).351 Collabora-
tive filtering is an approach to recommendations that is based on the explicit or
implicit feedback (e.g. ratings and consumption, respectively) provided by other
users of the system. The intuition behind it is seen in the “users who liked this item
also liked. . . ” feature on many services. The study found that such systems can
underperform for minority groups in the sense of being worse at recommending
content that those users would like. A related but distinct reason for underperfor-
mance occurs when users from one group are less observable, e.g., less likely to
provide ratings. The underlying assumption is that different groups have different
preferences, so that what the system learns about one group doesn’t generalize to
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other groups.
In general, this type of unfairness is hard to study in real systems (not just by

external researchers but also by system operators themselves). The main difficulty
is accurately measuring the target variable. The relevant target construct from a
fairness perspective is users’ satisfaction with the results or how well the results
served the users’ needs. Metrics such as clicks and ratings serve as crude proxies
for the target, and are themselves subject to demographic measurement biases.
Companies do expend significant resources on A/B testing or other experimental
methods for optimizing search and recommendation systems, and frequently
measure demographic differences as well. But to reiterate, such tests almost always
emphasize metrics of interest to the firm rather than benefit or payoff for the user.

A rare attempt to transcend this limitation comes from an (internal) audit study
of the Bing search engine by Merhotra et al.352 The authors devised methods to
disentangle user satisfaction from other demographic-specific variation by control-
ling for the effects of demographic factors on behavioral metrics. They combined it
with a method for inferring latent differences directly instead of estimating user
satisfaction for each demographic group and then comparing these estimates. This
method infers which impression, among a randomly selected pair of impressions,
led to greater user satisfaction. They did this using proxies for satisfaction such as
reformulation rate. Reformulating a search query is a strong indicator of dissatis-
faction with the results. Based on these methods, they found no gender differences
in satisfaction but mild age differences.

Unfairness to producers. In 2019, a group of content creators sued YouTube
alleging that YouTube’s algorithms as well as human moderators suppressed the
reach of LGBT-focused videos and the ability to earn ad revenue from them. This
is a distinct type of issue from that discussed above, as the claim is about a harm to
producers rather than consumers (although, of course, YouTube viewers interested
in LGBT content are also presumably harmed). There are many other ongoing
allegations and controversies that fall into this category: partisan bias in search
results and social media platforms, search engines favoring results from their own
properties over competitors, fact-checking of online political ads, and inadequate
(or, conversely, over-aggressive) policing of purported copyright violations. It
is difficult to meaningfully discuss and address these issues through the lens
of fairness and discrimination rather than a broader perspective of power and
accountability. The core issue is that when information platforms have control
over public discourse, they become the arbiters of conflicts between competing
interests and viewpoints. From a legal perspective, these issues fall primarily under
antitrust law and telecommunication regulation rather than antidiscrimination law.

Representational harms. The book Algorithms of Oppression drew attention to the
ways in which search engines reinforce harmful racial, gender, and intersectional
stereotypes.48 There have also been quantitative studies of some aspects of these
harms. In keeping with our quantitative focus, let’s discuss a study that measured
how well the gender skew in Google image search results for 45 occupations (author,
bartender, construction worker . . . ) corresponded to the real-world gender skew of
the respective occupations.37 This can be seen as test for calibration: instances are
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occupations and the fraction of women in the search results is viewed as a predictor
of the fraction of women in the occupation in the real world. The study found weak
evidence for stereotype exaggeration, that is, imbalances in occupational statistics
are exaggerated in image search results. However, the deviations were minor.

Consider a thought experiment: suppose the study had found no evidence of
miscalibration. Is the resulting system fair? It would be simplistic to answer in the
affirmative for at least two reasons. First, the study tested calibration between image
search results and occupational statistics in the United States. Gender stereotypes of
occupations as well as occupational statistics differ substantially between countries
and cultures. Second, accurately reflecting real-world statistics may still constitute
a representational harm when those statistics are skewed and themselves reflect a
history of prejudice. Such a system contributes to the lack of visible role models
for underrepresented groups. To what extent information platforms should bear
responsibility for minimizing these imbalances, and what types of interventions
are justified, remain matters of debate.

Understanding unfairness in ad targeting

Ads have long been targeted in relatively crude ways. For example, a health
magazine might have ads for beauty products, exploiting a coarse correlation.
In contrast to previous methods, online targeting offers several key advantages
to advertisers: granular data collection about individuals, the ability to reach
niche audiences (in theory, the audience size can be one, since ad content can be
programmatically generated and customized with user attributes as inputs), and
the ability to measure conversion (conversion is when someone who views the ad
clicks on it, and then takes another action such as a purchase). To date, ad targeting
has been one of the most commercially impactful applications of machine learning.

The complexity of modern ad targeting results in many avenues for disparities
in the demographics of ad views, which we will study. But it is not obvious how
to connect these disparities to fairness. After all, many types of demographic
targeting such as clothing ads by gender are considered innocuous.

There are two frameworks for understanding potential harms from ad targeting.
The first framework sees ads as unlocking opportunities for their recipients, because
they provide information that the viewer might not have. This is why targeting
employment or housing ads based on protected categories may be unfair and
unlawful. The domains where targeting is legally prohibited broadly correspond to
those which impact civil rights, and reflect the complex histories of discrimination
in those domains, as discussed in Chapter 6.

The second framework views ads as tools of persuasion rather than information
dissemination. In this framework, harms arise from ads being manipulative — that
is, exerting covert influence instead of making forthright appeals — or exploiting
stereotypes.353 Users are harmed by being targeted with ads that provide them
negative utility, as opposed to the first framework, in which the harm comes from
missing out on ads with positive utility. The two frameworks don’t necessarily
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contradict each other. Rather, individual ads or ad campaigns can be seen as either
primarily informational or primarily persuasive, and accordingly, one or the other
framework might be appropriate for analysis.5

There is a vast literature on how race and gender are portrayed in ads; we
consider this literature to fall under the persuasion framework.355 However, this
line of inquiry has yet to turn its attention to online targeted advertising, which
has the potential for accentuating the harms of manipulation and stereotyping by
targeting specific people and groups. Thus, the empirical research that we will
highlight falls under the informational framework.

There are roughly three mechanisms by which the same targeted ad may reach
one group more often than another. The most obvious is the use of explicit targeting
criteria by advertisers: either the sensitive attribute itself or a proxy for it (such
as ZIP code as a proxy for race). For example, Facebook allows thousands of
targeting categories, including categories that are automatically constructed by the
system based on users’ free-form text descriptions of their interests. Investigations
by ProPublica found that these categories included “Jew haters” and many other
antisemitic terms.356 The company has had difficulty eliminating even direct
proxies for sensitive categories, resulting in repeated exposés.

The second disparity-producing mechanism is optimization of click rate (or
another measure of effectiveness), which is one of the core goals of algorithmic
targeting. Unlike the first category, this does not require explicit intent by the
advertiser or the platform. The algorithmic system may predict a user’s probability
of engaging with an ad based on her past behavior, her expressed interests, and
other factors (including, potentially, explicitly expressed sensitive attributes).

The third mechanism is market effects: delivering an ad to different users
may cost the advertiser different amounts. For example, some researchers have
observed that women cost more to advertise to than men and hypothesized that
this is because women clicked on ads more often, leading to a higher measure of
effectiveness.274, 357 Thus if the advertiser simply specifies a total budget and leaves
the delivery up to the platform (which is a common practice), then the audience
composition will vary depending on the budget: smaller budgets will result in the
less expensive group being overrepresented.

In terms of methods to detect these disparities, researchers and journalists have
used broadly two approaches: interact with the system either as a user or as an
advertiser. Datta, Tschantz and Datta created simulated users that had the “gender”
attribute in Google’s Ad settings page set to female or male, and found that Google
showed the simulated male users ads from a certain career coaching agency that
promised large salaries more frequently than the simulated female users.358 While
this type of study establishes that employment ads through Google’s ad system
are not blind to gender (as expressed in the ad settings page), it cannot uncover
the mechanism, i.e., distinguish between explicit targeting by the advertiser and
platform effects of various kinds.

Interacting with ad platforms as an advertiser has proved to be a more fruitful

5The economic analysis of advertising includes a third category, complementary, that’s related to
persuasive or manipulative category.354
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approach so far, especially to analyze Facebook’s advertising system. This is
because Facebook exposes vastly more details about its advertising system to
advertisers than to users. In fact, it allows advertisers to learn more information
it has inferred or purchased about a user than it will allow the user himself
to access.359 The existence of anti-semitic auto-generated targeting categories,
mentioned above, was uncovered using the advertiser interface. Ad delivery on
Facebook has been found to introduce demographic disparities due to both market
effects and effectiveness optimization effects.274 To reiterate, this means that even
if the advertiser does not explicitly target an ad by (say) gender, there may be a
systematic gender skew in the ad’s audience. The optimization effects are enabled
by Facebook’s analysis of the contents of ads. Interestingly, this includes image
analysis, which researchers revealed using the clever technique of serving ads with
transparent content that is invisible to humans but nonetheless had an effect on ad
delivery.274

Fairness considerations in the design of online marketplaces

Online platforms for ride hailing, short-term housing, and freelance (gig) work
have risen to prominence in the 2010s: notable examples are Uber, Lyft, Airbnb,
and TaskRabbit. They are important targets for the study of fairness because they
directly impact people’s livelihoods and opportunities. We will set aside some
types of markets from our discussion. Online dating apps share some similarities
with these markets, but they require an entirely separate analysis because the
norms governing romance are different from those governing commerce and
employment.360 Then there are marketplaces for goods such as Amazon and eBay.
In these markets the characteristics of the participants are less salient than the
attributes of the product, so discrimination is less of a concern (which is not to say
that it is nonexistent361).

Unlike the domains studied so far, machine learning is not a core component
of the algorithms in online marketplaces. (Nonetheless, we consider it in scope
because of our broad interest in decision making and fairness, rather than just
machine learning.) Therefore fairness concerns are less about training data or
algorithms; the far more serious issue is discrimination by buyers and sellers. For
example, one study found that Uber drivers turned off the app in areas where they
did not want to pick up passengers.362

Methods to detect discrimination in online marketplaces are fairly similar to
traditional settings such as housing and employment; a combination of audit
studies and observational methods have been used. A notable example is a field
experiment targeting Airbnb by Edelman, Luca, and Svirsky.363 The authors
created fake guest accounts whose names signaled race (African-American or
White) and gender (female or male), but were otherwise identical. Twenty different
names were used: five in each combination of race and gender. They then contacted
the hosts of 6,400 listings in five cities through these accounts to inquire about
availability. They found a 50% probability of acceptance of inquiries from guests
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with White-sounding names, compared to 42% for guests with African-American-
sounding names. The effect was persistent regardless of the host’s race, gender,
and experience on the platform, as well as listing type (high or low priced; entire
property or shared), and diversity of the neighborhood. Note that the accounts did
not have profile pictures; if inference of race by hosts happens in part based on
appearance, a study design that varied the accounts’ profile pictures might find a
greater effect.

Compared to traditional settings, some types of observational data are readily
available on online platforms, which can be useful to the researcher. In the above
study, the public availability of reviews of listed properties proved useful. It
was not essential to the design of the study, but allowed an interesting validity
check. When the analysis was restricted to the 29% hosts in the sample who had
received at least one review from an African-American guest, the racial disparity
in responses declined sharply. If the study’s findings were a result of a quirk of
the experimental design, rather than actual racial discrimination by Airbnb hosts,
it would be difficult to explain why the effect would disappear for this subset of
hosts. This supports the study’s external validity.

In addition to discrimination by participants, another fairness issue that many
online marketplaces must contend with is geographic differences in effectiveness.
One study of TaskRabbit and Uber found that neighborhoods with high popu-
lation density and high-income neighborhoods receive the largest benefits from
the sharing economy.364 Due to the pervasive correlation between poverty and
race/ethnicity, these also translate to racial disparities. In the Chicago area, where
this study was conducted, Black and Latino neighborhoods have a lower population
density, further exacerbating this effect.

Of course, geographic and structural disparities in these markets are not caused
by online platforms, and no doubt exist in offline analogs such as word-of-mouth
gig work. In fact, the magnitude of racial discrimination is much larger in scenarios
such as hailing taxis on the street365 compared to technologically mediated inter-
actions. However, in comparison to markets regulated by antidiscrimination law,
such as hotels, discrimination in online markets is more severe. In any case, the
formalized nature of online platforms makes audits easier. As well, the centralized
nature of these platforms is a powerful opportunity for fairness interventions.

There are many ways in which platforms can use design to minimize users’
ability to discriminate (such as by withholding information about counterparties)
and the impetus to discriminate (such as by making participant characteristics less
salient compared to product characteristics in the interface).366 There is no way
for platforms to take a neutral stance towards discrimination by participants: even
choices made without explicit regard for discrimination can affect the extent to
which users’ prejudicial attitudes translate into discriminatory behavior.

As a concrete example of design decisions to mitigate discrimination, the au-
thors of the Airbnb study recommend that the platform withhold guest information
from hosts prior to booking. (Note that ride hailing services do withhold customer
information. Carpooling services, on the other hand, allow users to view names
when selecting matches; unsurprisingly, this enables discrimination against eth-
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nic minorities.367) The authors of the study on geographic inequalities suggest,
among other interventions, that ride hailing services provide a “geographic repu-
tation” score to drivers to combat the fact that drivers often incorrectly perceive
neighborhoods to be more dangerous than they are.

Mechanisms of discrimination

We’ve looked at a number of studies on detecting unfairness in algorithmic systems.
Let’s take stock.

In the introductory chapter we discussed, at a high-level, different ways in
which unfairness could arise in machine learning systems. Here, we see that the
specific sources and mechanisms of unfairness can be intricate and domain-specific.
Researchers need an understanding of the domain to effectively formulate and test
hypotheses about sources and mechanisms of unfairness.

For example, consider the study of gender classification systems discussed
above. It is easy to guess that unrepresentative training datasets contributed to
the observed accuracy disparities, but unrepresentative in what way? A follow-
up paper by Muthukumar et al. considered this question.368 It analyzed several
state-of-the-art gender classifiers (in a lab setting, as opposed to field tests of
commercial APIs in the original paper) and argued that underrepresentation of
darker skin tones in the training data is not a reason for the observed disparity.
Instead, one mechanism suggested by the authors is based on the fact that many
training datasets of human faces comprise photos of celebrities. 6 They found that
photos of female celebrities have more prominent makeup compared to photos of
women in general. This led to classifiers using makeup as a proxy for gender in a
way that didn’t generalize to the rest of the population.

Slightly different hypotheses can produce vastly different conclusions, especially
in the presence of complex interactions between content producers, consumers,
and platforms. For example, one study by Robertson et al. tested claims of partisan
bias by search engines, as well as related claims that search engines return results
that reinforce searchers’ existing views (the “filter bubble” hypothesis).370 The
researchers recruited participants with different political views, collected Google
search results on a political topic in both standard and incognito windows from
those participants’ computers, and found that standard (personalized) search
results were no more partisan than incognito (non-personalized) ones, seemingly
finding evidence against the claim that online search reinforces users’ existing
beliefs.

This finding is consistent with the fact that Google doesn’t personalize search
results except based on searcher location and immediate (10-minute) history of
searches. This is known based on Google’s own admission371 and prior research.372

However, a more plausible hypothesis for the filter bubble effect in search comes

6This overrepresentation is because photos of celebrities are easier to gather publicly, and celebri-
ties are thought to have weakened privacy rights due to the competing public interest in their
activities. However, for a counterpoint, see.369
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from a qualitative study by Francesca Tripodi.373 Simplified somewhat for our
purposes, it goes as follows: when an event with political significance unfolds, key
influencers (politicians, partisan news outlets, interest groups, political message
boards) quickly craft their own narratives of the event. Those narratives selectively
reach their respective partisan audiences through partisan information networks.
Those people then turn to search engines to learn more or to “verify the facts”.
Crucially, however, they use different search terms to refer to the same event,
reflecting the different narratives to which they have been exposed.7 The results
for these different search terms are often starkly different, because the producers of
news and commentary selectively and strategically cater to partisans using these
same narratives. Thus, searchers’ beliefs are reinforced. Note that this filter-bubble-
producing mechanism operates effectively even though the search algorithm itself
is arguably neutral.8

A final example to reinforce the fact that disparity-producing mechanisms can
be subtle and that domain expertise is required to formulate the right hypothesis:
an investigation by journalists found that staples.com showed discounted prices
to individuals in some ZIP codes; these ZIP codes were, on average, wealthier.375

However, the actual pricing rule that explained most of the variation, as they
reported, was that if there was a competitor’s physical store located within 20 miles
or so of the customer’s inferred location, then the customer would see a discount!
Presumably this strategy is intended to infer the customer’s reservation price or
willingness to pay. Incidentally, this is a similar kind of “statistical discrimination”
as seen in the car sales discrimination study discussed at the beginning of this
chapter.

Fairness criteria in algorithmic audits

While the mechanisms of unfairness are different in algorithmic systems, the
applicable fairness criteria are the same for algorithmic decision making as other
kinds of decision making. That said, some fairness notions are more often relevant,
and others less so, in algorithmic decision making compared to human decision
making. We offer a few selected observations on this point.

Fairness as blindness is seen less often in audit studies of algorithmic systems;
such systems are generally designed to be blind to sensitive attributes. Besides
fairness concerns often arise precisely from the fact that blindness is generally
not an effective fairness intervention in machine learning. Two exceptions are ad
targeting and online marketplaces (where the non-blind decisions are in fact being
made by users and not the platform).

7For example, in 2017, US president Donald Trump called for the National Football League to fire
players who engaged in a much-publicized political protest during games. Opposing narratives of
this event were that NFL viewership had declined due to fans protesting players’ actions, or that it
had increased despite the protests. Search terms reflecting these views might be “NFL ratings down”
versus “NFL ratings up”.

8But see374 (“Data Void Type #4: Fragmented Concepts”) for an argument that search engines’
decision not to collapse related concepts contributes to this fragmentation.
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Unfairness as arbitrariness. There are roughly two senses in which decision
making could be considered arbitrary and hence unfair. The first is when decisions
are made on a whim rather than a uniform procedure. Since automated decision
making results in procedural uniformity, this type of concern is generally not
salient.

The second sense of arbitrariness applies even when there is a uniform proce-
dure, if that procedure relies on a consideration of factors that are thought to be
irrelevant, either statistically or morally. Since machine learning excels at finding
correlations, it commonly identifies factors that seem puzzling or blatantly unac-
ceptable. For example, in aptitude tests such as the Graduate Record Examination,
essays are graded automatically. Although e-rater and other tools used for this
purpose are subject to validation checks, and are found to perform similarly to
human raters on samples of actual essays, they are able to be fooled into giving
perfect scores to machine-generated gibberish. Recall that there is no straightfor-
ward criterion that allows us to assess if a feature is morally valid (Chapter 2), and
this question must be debated on a case-by-case basis.

More serious issues arise when classifiers are not even subjected to proper
validity checks. For example, there are a number of companies that claim to predict
candidates’ suitability for jobs based on personality tests or body language and
other characteristics in videos.350 There is no peer-reviewed evidence that job
performance is predictable using these factors, and no basis for such a belief. Thus,
even if these systems don’t produce demographic disparities, they are unfair in the
sense of being arbitrary: candidates receiving an adverse decision lack due process
to understand the basis for the decision, contest it, or determine how to improve
their chances of success.

Observational fairness criteria including demographic parity, error rate parity, and
calibration have received much attention in algorithmic fairness studies. Conve-
nience has probably played a big role in this choice: these metrics are easy to gather
and straightforward to report without necessarily connecting them to moral notions
of fairness. We reiterate our caution about the overuse of parity-based notions;
parity should rarely be made a goal by itself. At a minimum, it is important to
understand the sources and mechanisms that produce disparities as well as the
harms that result from them before deciding on appropriate interventions.

Representational harms. Traditionally, allocative and representational harms were
studied in separate literatures, reflecting the fact that they are mostly seen in
separate spheres of life (for instance, housing discrimination versus stereotypes
in advertisements). Many algorithmic systems, on the other hand, are capable of
generating both types of harms. A failure of face recognition for darker-skinned
people is demeaning, but it could also prevent someone from being able to access
a digital device or enter a building that uses biometric security.
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Information flow, fairness, privacy

A notion called information flow is seen frequently in algorithmic audits. This
criterion requires that sensitive information about subjects not flow from one
information system to another, or from one part of a system to another. For
example, a health website may promise that user activity, such as searches and
clicks, are not shared with third parties such as insurance companies (since that
may lead to potentially discriminatory effects on insurance premiums). It can
be seen as a generalization of blindness: whereas blindness is about not acting
on available sensitive information, restraining information flow ensures that the
sensitive information is not available to act upon in the first place.

There is a powerful test for testing violations of information flow constraints,
which we will call the adversarial test.358 It does not directly detect information
flow, but rather decisions that are made on the basis of that information. It is
powerful because it does not require specifying a target variable, which minimizes
the domain knowledge required of the researcher. To illustrate, let’s revisit the
example of the health website. The adversarial test operates as follows:

1. Create two groups of simulated users (A and B), i.e., bots, that are identical
except for the fact that users in group A, but not group B, browse the sensitive
website in question.

2. Have both groups of users browse other websites that are thought to serve ads
from insurance companies, or personalize content based on users’ interests,
or somehow tailor content to users based on health information. This is
the key point: the researcher does not need to hypothesize a mechanism
by which potentially unfair outcomes result — e.g. which websites (or third
parties) might receive sensitive data, whether the personalization might take
the form of ads, prices, or some other aspect of content.

3. Record the contents of the web pages seen by all users in the previous step.
4. Train a binary classifier to distinguish between web pages encountered by

users in group A and those encountered by users in group B. Use cross-
validation to measure its accuracy.

5. If the information flow constraint is satisfied (i.e., the health website did
not share any user information with any third parties), then the websites
browsed in step 2 are blind to user activities in step 1; thus the two groups
of users look identical, and there is no way to systematically distinguish
the content seen by group A from that seen by group B. The classifier’s
test accuracy should not significantly exceed 1

2 . The permutation test can be
used to quantify the probability that the classifier’s observed accuracy (or
better) could have arisen by chance if there is in fact no systematic difference
between the two groups.376

There are additional nuances relating to proper randomization and controls, for
which we refer the reader to the study by Datta, Tschantz, and Datta.358 Note that
if the adversarial test fails to detect an effect, it does not mean that the information
flow constraint is satisfied. Also note that the adversarial test is not capable of
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measuring an effect size. Such a measurement would be meaningless anyway, since
the goal is to detect information flow, and any effect on observable behavior of the
system is merely a proxy for it.

This view of information flow as a generalization of blindness reveals an
important connection between privacy and fairness. Many studies based on this
principle can be seen as either privacy or fairness investigations. For example,
a study found that Facebook solicits phone numbers from users with the stated
purpose of improving account security, but uses those numbers for ad targeting.377

This is an example of undisclosed information flow from one part of the system
to another. Another study used ad retargeting — in which actions taken on one
website, such as searching for a product, result in ads for that product on another
website — to infer the exchange of user data between advertising companies.378

Neither study used the adversarial test.

Comparison of research methods

For auditing user fairness on online platforms, there are two main approaches:
creating fake profiles and recruiting real users as testers. Each has its pros and
cons. Both approaches have the advantage, compared to traditional audit studies,
of allowing a potentially greater scale due to the ease of creating fake accounts or
recruiting testers online (e.g. through crowd-sourcing).

Scaling is especially relevant for testing geographic differences, given the global
reach of many online platforms. It is generally possible to simulate geographically
dispersed users by manipulating testing devices to report faked locations. For
example, the above-mentioned investigation of regional price differences on sta-
ples.com actually included a measurement from each of the 42,000 ZIP codes in the
United States.379 They accomplished this by observing that the website stored the
user’s inferred location in a cookie, and proceeding to programmatically change
the value stored in the cookie to each possible value.

That said, practical obstacles commonly arise in the fake-profile approach. In
one study, the number of test units was practically limited by the requirement for
each account to have a distinct credit card associated with it.380 Another issue
is bot detection. For example, the Airbnb study was limited to five cities, even
though the researchers originally planned to test more, because the platform’s
bot-detection algorithms kicked in during the course of the study to detect and
shut down the anomalous pattern of activity. It’s easy to imagine an even worse
outcome where accounts detected as bots are somehow treated differently by the
platform (e.g. messages from those accounts are more likely to be hidden from
intended recipients), compromising the validity of the study.

As this example illustrates, the relationship between audit researchers and
the platforms being audited is often adversarial. Platforms’ efforts to hinder
researchers can be technical but also legal. Many platforms, notably Facebook,
prohibit both fake-account creation and automated interaction in their Terms of
Service. The ethics of Terms-of-Service violation in audit studies is a matter of
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ongoing debate, paralleling some of the ethical discussions during the formative
period of traditional audit studies. In addition to ethical questions, researchers
incur a legal risk when they violate Terms of Service. In fact, under laws such as
the US Computer Fraud and Abuse Act, it is possible that they may face criminal
as opposed to just civil penalties.

Compared to the fake-profile approach, recruiting real users allows less control
over profiles, but is better able to capture the natural variation in attributes and
behavior between demographic groups. Thus, neither design is always preferable,
and they are attuned to different fairness notions. When testers are recruited via
crowd-sourcing, the result is generally a convenience sample (i.e. the sample is
biased towards people who are easy to contact), resulting in a non-probability
(non-representative) sample. It is generally infeasible to train such a group of
testers to carry out an experimental protocol; instead, such studies typically handle
the interaction between testers and the platform via software tools (e.g. browser
extensions) created by the researcher and installed by the tester. For more on the
difficulties of research using non-probability samples, see the book Bit by Bit by
Matthew Salganik.381

Due to the serious limitations of both approaches, lab studies of algorithmic
systems are commonly seen. The reason that lab studies have value at all is that
since automated systems are fully specified using code, the researcher can hope to
simulate them relatively faithfully. Of course, there are limitations: the researcher
typically doesn’t have access to training data, user interaction data, or configuration
settings. But simulation is a valuable way for developers of algorithmic systems to
test their own systems, and this is a common approach in the industry. Companies
often go so far as to make de-identified user interaction data publicly available so
that external researchers can conduct lab studies to develop and test algorithms.
The Netflix Prize is a prominent example of such a data release.382 So far, these
efforts have almost always been about improving the accuracy rather than the
fairness of algorithmic systems.

Lab studies are especially useful for getting a handle on questions that cannot
be studied by other empirical methods, notably the dynamics of algorithmic systems,
i.e., their evolution over time. One prominent result from this type of study is the
quantification of feedback loops in predictive policing.30, 31 Another insight is the
increasing homogeneity of users’ consumption patterns over time in recommender
systems.383

Observational studies and observational fairness criteria continue to be impor-
tant. Such studies are typically carried out by algorithm developers or decision
makers, often in collaboration with external researchers.384, 385 It is relatively rare
for observational data to be made publicly available. A rare exception, the COMPAS
dataset, involved a Freedom of Information Act request.

Finally, it is worth reiterating that quantitative studies are narrow in what they
can conceptualize and measure.386 Qualitative and ethnographic studies of decision
makers thus provide an invaluable complementary perspective. To illustrate, we’ll
discuss a study by Passi and Barocas that reports on six months of ethnographic
fieldwork in a corporate data science team.170 The team worked on a project in
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the domain of car financing that aimed to “improve the quality” of leads (leads
are potential car buyers in need of financing who might be converted to actual
buyers through marketing). Given such an amorphous high-level goal, formulating
a concrete and tractable data science problem is a necessary and nontrivial task —
a task that is further complicated by the limitations of the data available. The paper
documents how there is substantial latitude in problem formulation, and spotlights
the iterative process that was used, resulting in the use of a series of proxies for lead
quality. The authors show that different proxies have different fairness implications:
one proxy would maximize people’s lending opportunities and another would
alleviate dealers’ existing biases, both potentially valuable fairness goals. However,
the data scientists were not aware of the normative implications of their decisions
and did not explicitly deliberate them.

Looking ahead

In this chapter, we covered traditional tests for discrimination as well as fairness
studies of various algorithmic systems. Together, these methods constitute a
powerful toolbox for interrogating a single decision system at a single point in time.
But there are other types of fairness questions we can ask: what is the cumulative
effect of the discrimination faced by a person over the course of a lifetime? What
structural aspects of society result in unfairness? We cannot answer such a question
by looking at individual systems. The next chapter is all about broadening our
view of discrimination and then using that broader perspective to study a range of
possible fairness interventions.

Chapter notes

To understand social science audit studies in more depth, see the paper by Devah
Pager.302 S. Michael Gaddis provides a more recent introduction and survey.387

Auditing of algorithmic systems is a young, quickly evolving field: a 2014 paper
issued a call to action towards this type of research.[ˆsandvig] Most of the studies
that we cite postdate that piece. For a more recent practitioner-focused overview,
Costanza-Chock, Raji, and Buolamwini compile best practices for auditors and
provide recommendations for policy makers based on interviews with over 150

auditors.286 Vecchione, Levy and Barocas draw lessons for algorithm audits and
justice from the history of audits in the social sciences.388 Brundage et al put
third-party audits in the context of many other ways of supporting verifiable claims
about the impacts of AI systems.389

For in-depth treatments of the history and politics of information platforms,
see The Master Switch by Tim Wu,390 The Politics of ‘Platforms’ and Custodians of the
Internet by Tarleton Gillespie,391, 392 and The New Governors by Kate Klonick.393
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8
A broader view of discrimination

Machine learning systems don’t operate in a vacuum; they are adopted in societies
that already have many types of discrimination intertwined with systems of oppres-
sion such as racism. This is at the root of fairness concerns in machine learning. In
this chapter we’ll take a systematic look at discrimination in society. This will give
us a more complete picture of the potential harmful impacts of machine learning.
We will see that while a wide variety of fairness interventions are possible—and
necessary—only a small fraction of them translate to technical fixes.

Case study: the gender earnings gap on Uber

We’ll use a paper that analyzes the gender earnings gap on Uber394 as a way to
apply some of the lessons from the previous two chapters while setting up some of
the themes of this chapter. The study was coauthored by current and former Uber
employees.

The authors start with the observation that female drivers earn 7% less on Uber
per active hour than male drivers do. They conclude that this gap can be explained
by three factors: gender differences in drivers’ choices of where to drive, men’s
greater experience on the platform, and men’s tendency to drive faster. They find
that customer discrimination and algorithmic discrimination do not contribute to
the gap. We’ll take the paper’s technical claims at face value, but use the critical
framework we’ve introduced to interpret the findings quite differently from the
authors.

First, let’s understand the findings in more detail.
The paper analyzes observational data on trips in the United States, primarily

in Chicago. Above, we’ve drawn a causal graph showing what we consider to be
the core of the causal model studied in the paper (the authors do not draw such
a graph and do not pose their questions in a causal framework; we have chosen
to do so for pedagogical purposes). A full graph would be much larger than the
Figure; for example, we’ve omitted a number of additional controls, such as race,
that are presented in the appendices.

We’ll use this graph to describe the findings. At a high level, the graph
describes a joint distribution whose samples are trips. To illustrate, different trips
corresponding to the same driver will have the same Residence (unless the driver
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Figure 8.1: Our understanding of the causal model implicit in the Uber study.

moved during their tenure on the platform), but different Experience (measured as
number of prior trips).

Drivers’ hourly earnings are primarily determined by the algorithm that al-
locates trip requests from riders to drivers. The allocation depends on demand,
which in turn varies by location and time of the week (the week-to-week variation is
considered noise). Uber’s algorithm ignores driver attributes including experience
and gender, hence there are no arrows from those nodes to Trip request. In addition,
a few other factors might affect earnings. Drivers who drive faster complete more
trips, drivers may strategically accept or cancel trips, and riders might discriminate
by cancelling trips after the driver accepts.

The paper uses a technique called Gelbach decomposition to identify the effect
of each of several variables on the hourly earnings. Decomposition is a set of
techniques used in economics for quantifying the contribution of various sources
to an observed difference in outcomes. Although the authors don’t perform
causal inference, we will continue to talk about their findings in causal terms for
pedagogical purposes. The difference is not salient to the high-level points we wish
to make.

The authors find that the earnings gap (i.e. effect of Driver gender on Hourly
earning) can be entirely explained by paths involving Driver experience, Location,
and Driving speed. Paths through Rider cancellation and Time of week don’t have
significant effects.

The authors further interrogate the effect of gender on location (i.e. the choice
of where to drive), and find that women are less likely to drive in less safe areas
that also turn out to be more lucrative. They then dig deeper and argue that this
effect operates almost entirely by women residing in safer areas and choosing to
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drive based on where they live.
The returns to experience could operate in several ways. The authors don’t

decompose the effect but suggest several possibilities: the choice of where and
when to drive and other elements of strategy including which rides to accept. A
key finding of the paper is the effect of gender on experience. Men are less likely
to leave the platform and drive more hours during each week that they stay on
the platform, resulting in a large experience differential. There are no gender
differences in learning from experience: male and female drivers’ behavior changes
at the same rate for a given number of trips.

The paper highlights questions that can be studied using observational data but
not necessarily with field experiments (audit studies). An audit study of the Uber
gender pay gap (along the lines of those discussed in the previous chapter) may
have involved varying the driver’s name to test the effect on rider cancellation and
ratings. Such an experiment would have no way to uncover the numerous other
paths by which gender affects earnings. An audit study would be more suited for
studying discrimination by drivers against riders, in part because drivers in these
systems exercise more choice in the matching process than riders do. Indeed, a
study found that UberX and Lyft drivers discriminate against Black and female
riders.365

Causal diagrams in realistic scenarios are more complex than typical textbook
examples. We reiterate that the graph above is much simplified compared to the
(implicit) graph in the paper. The estimation in the paper proceeds as a series of
regressions focusing iteratively on small parts of the graph, rather than an analysis
of the entire graph at once. In any messy exercise such as this, there is always the
possibility of unobserved confounders.

Despite the number of possible effects considered in the study, it leaves out
many others. For example, some drivers may move to take advantage of the earning
potential. This would introduce a cycle into our causal graph (Location –> Residence).
This type of behavior might seem unlikely for an individual driver, which justifies
ignoring such effects in the analysis. Over time, however, the introduction of
transportation systems has the potential to reshape communities.395, 396 Today’s
empirical methods have limitations in understanding these types of long-term
phenomena that involve feedback loops.

A more notable omission from the paper is the effect of driver gender on
experience. Why do women drop off the platform far more frequently? Could one
reason be that they face more harassment from riders? The authors don’t seem to
consider this question.

This leads to our most salient observation about this study: the narrow defini-
tion of discrimination. First, as noted, the study doesn’t consider that differential
dropout rates might be due to discrimination.1 This is especially pertinent since
the gender gap in hourly earnings is merely 7% whereas the gap in participation
rate is a factor of 2.7! One would think that if there is rider discrimination, it would

1For example, the authors say in the abstract: Our results suggest that, in a “gig” economy setting
with no gender discrimination and highly flexible labor markets, women’s relatively high opportunity cost of
non-paid-work time and gender-based differences in preferences and constraints can sustain a gender pay gap.
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be most apparent in its effect on dropout rates. In contrast, the only avenue of
discrimination considered in the paper involves a (presumably misogynistic) rider
who cancels a ride, incurring delays and potentially algorithmic penalties, based
solely on the driver’s gender.

Further, the authors take an essentialist view of the gender difference in average
speed (e.g. “men are more risk tolerant and aggressive than women”). We may
question how innate these differences are, given that in contemporary U.S. society,
women may face social penalties when they are perceived as aggressive. If this
is true of driver-rider interactions, then women who drive as fast as men will
receive lower ratings with attendant negative consequences. This is a form of
discrimination by riders.

Another possible view of the speed difference, also not considered by the
authors, is that male drivers on average provide a lower quality of service due to an
increase in accident risk resulting from greater speed (which also creates negative
externalities for others on the road). In this view, Uber’s matching algorithm
discriminates against female drivers by not accounting for this difference.2

Finally, the paper doesn’t consider structural discrimination. It finds that
women reside in less lucrative neighborhoods and that their driving behavior is
shaped by safety considerations. However, a deeper understanding the reasons for
these differences is outside the scope of the paper. In fact, gender differences in
safety risks and the affordability of residential neighborhoods can be seen as an
example of the greater burden that society places on women. In other words, Uber
operates in a society in which women face discrimation and have unequal access
to opportunities, and the platform perpetuates those differences in the form of a
pay gap.3

Let us generalize a bit. There is a large set of studies that seek to explain the
reasons for observed disparities in wages or another outcome. Generally these
studies find that the direct effect of gender, race, or another sensitive attribute is
much smaller than the indirect effect. Frequently this leads to a vigorous debate
on whether or not the findings constitute evidence of discrimination or unfairness.
There is room for different views on this question. The authors of the Uber study
interpreted none of the three paths by which gender impacts earnings—experience,
speed, and location—as discrimination; we’ve argued that all three can plausibly
be interpreted as discrimination. Different moral frameworks will lead to different
answers. Views on these questions are also politically split. As well, scholars
in different fields often tend to answer these questions differently (including,
famously, social science and economics397).

Certainly these definitional questions are important. However, perhaps the
greatest value of studies on mechanisms of discrimination is that they suggest

2If riders give lower ratings to drivers who drive faster at the expense of safety, then the matching
algorithm does indirectly take safety considerations into account. We think it is unlikely that driver
ratings adequately reflect the risks of speeding, due to cognitive biases. After all, that is why we
need speed limits instead of leaving it up to drivers.

3See364 for a discussion of many ways in which existing geographic inequalities manifest in
sharing economy platforms including Uber.
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avenues for intervention without having to resolve definitional questions. Looking
at the Uber study from this lens, several interventions are apparent. Recall that
there is a massive gender disparity in the rate at which drivers drop out of the
platform. Uber could more actively solicit and listen to feedback from female
drivers and use that feedback to inform the design of the app. This may lead to
interventions such as making it easier for drivers (and riders) to report harassment
and taking stronger action in response to such reports.

As for the speed difference, Uber could warn drivers who exceed the speed
limit or whose speed results in a predicted accident risk that crosses some threshold
(such a prediction is presumably possible given Uber’s access to data). In addition,
Uber could use its predictive tools to educate drivers about strategy, decreasing
the returns to experience for all drivers. Finally, the findings also give greater
urgency to structural efforts to make neighborhoods safe for women. None of these
interventions require a consensus on whether or not female drivers on Uber are
discriminated against.

Three levels of discrimination

Sociologists organize discrimination into three levels: structural, organizational,
and interpersonal.325, 397 Structural discrimination arises from the ways in which
society is organized, both through relatively hard constraints such as discriminatory
laws and through softer ones such as norms and customs. Organizational factors
operate at the level of organizations or other decision-making units, such as a
company making hiring decisions. Interpersonal factors refer to the attitudes and
beliefs that result in discriminatory behavior by individuals.

A separate way to classify discrimination is as direct or indirect. By direct
discrimination we mean actions or decision processes that make explicit reference
to a sensitive attribute. By indirect discrimination we refer to actions or decision
processes that make no such reference, yet disadvantage one or more groups. The
line between direct and indirect discrimination is hazy and it is better to think of it
as a spectrum rather than a binary category.4

Table 8.1: Examples of discrimination organized into three
levels and on a spectrum of directness

Level More direct More indirect

Structural Laws against same-sex marriage Better funded schools in wealthier,
more segregated areas

Organizational Lack of disability accommodations Networked hiring
Interpersonal Overt animus Belief in need for innate brilliance

(combined with gender stereotypes)

4For attempts by philosophers to formalize the distinction, see.398 For a technical treatment of
direct vs. indirect effects, refer back to the Causality chapter. See also;399 in particular, the point that
“any direct effect is really an indirect effect if you zoom further into the relevant causal mechanism”.
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Structural factors

Structural factors refer to ways in which society is organized. A law that overtly
limits opportunities for certain groups is an example of a direct structural factor.
Due to various rights revolutions around the world, there are fewer of these laws
today than there used to be. Yet, discriminatory laws are far from a thing of the
past. For example, as of 2021, a mere 29 countries recognize marriage equality.400

Further, discriminatory laws of the past have created structural effects which persist
today.401

Indirect structural discrimination is pervasive in virtually every society. Here
are two well known examples affecting the United States. Drug laws and drug
policies, despite being facially neutral, have the effect of disproportionately affecting
minority groups, especially Black people.402 Schools in high-income neighborhoods
tend to be better funded (since public schools are funded primarily through
property taxes) and attract more qualified teachers, transmitting an educational
advantage to children of higher-income parents.

Other factors are even less tangible yet no less serious in terms of their effects,
such as cultural norms and stereotypes. In the case study of gender bias in Berkeley
graduate admissions in Chapter 5, we encountered the hypothesis that societal
stereotypes influence people’s career choices in a way that reproduces gender
inequalities in income and status:

The bias in the aggregated data stems . . . apparently from prior screen-
ing at earlier levels of the educational system. Women are shunted
by their socialization and education toward fields of graduate study
that are generally more crowded, less productive of completed degrees,
and less well funded, and that frequently offer poorer professional
employment prospects.

Organizational factors

Organizational factors operate at the level of organizations or decision-making
units: how they are structured, the decision making rules and processes they put
in place, and the context in which individual actors operate. Again, these lie on a
spectrum between direct and indirect.

The most direct form of discrimination—excluding people from participation
explicitly based on group membership—is mostly unlawful in liberal democracies.
However, practices such as lack of disability accommodations and failure to combat
sexual harassment are rampant. A more indirectly discriminatory policy is the
use of employees’ social networks in hiring, an extremely common practice. One
observational study found that the use of employee referrals in predominantly
White firms reduced the probability of a Black hire by nearly 75% relative to the
use of newspaper ads.403 The study controlled for spatial segregation, occupational
segregation, city, and firm size.
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Organizational discrimination can be revealed and addressed at the level of a
single organization, unlike structural factors (e.g. no individual school is responsi-
ble for teachers being attracted to schools in high-income neighborhoods).

Interpersonal factors

Interpersonal factors refer to the attitudes and beliefs that result in discriminatory
behavior by individuals. Sometimes people may discriminate because of an overt
animus for a certain group, in the sense that the discriminator does not attempt to
justify it by any appeal to rationality.

More often, the mechanisms involved are relatively indirect. A 2015 study by
Leslie, Cimpian, Meyer, and Freeland found that academic fields in which achieve-
ment is believed to be driven by innate brilliance exhibit a greater gender disparity,
i.e., they have fewer women.404 The authors propose that the disparity is caused
by the combination of the belief in the importance of innate brilliance together
with stereotypes about lower innate brilliance in women. This combination could
then impact women in brilliance-emphasizing disciplines in two ways: either by
practitioners of those disciplines exhibiting biases against women, or by women
internalizing those stereotypes and self-selecting out of those disciplines (or per-
forming more poorly than they otherwise would). The authors don’t design tests to
distinguish between these competing mechanisms. However, they do test whether
the observed disparities could alternatively be caused by actual innate differences
(rather than beliefs in innate differences) in ability or aptitude, or willingness to
work long hours. Using various proxies (such as GRE score for innate ability),
they argue that such competing explanations cannot account for the observed
differences.

One may wonder: can we not test for innate differences more rigorously, such
as by examining young children? A follow-up study showed that children as young
as six tend to internalize gendered stereotypes about innate brilliance, and these
stereotypes influence their selection of activities.405 These difficulties hint at the
underlying complexity of the concept of gender, which is produced and reinforced
in part through these very stereotypes.406

To recap, we’ve discussed structural, organizational, and interpersonal discrimi-
nation, and the fact that these are often indirect and pervasive. The three levels are
interconnected: for example, in the Uber case study, structural inequalities don’t
perpetuate themselves, but rather through organizational decisions; those decisions
at Uber are made by individuals whose worldviews are shaped by culture. In other
words, even structural discrimination is actively perpetuated, and we collectively
have the power to mitigate it and to reverse course. It would be a mistake to resign
ourselves to viewing structural discrimination as simply the way the world is.

Notice that adopting statistical decision making is not automatically a way out
of any of these factors, which operate for the most part in the background and not
at a single, discrete moment of decision making.

211



The persistence and magnitude of inequality

Formal equality under the law primarily addresses direct discrimination and has
relatively little effect on indirect discrimination, whether structural, organizational,
or interpersonal. This is one reason why inequality can be persistent in societies
that seemingly promise equal opportunity. Here are two stark examples of how
long inequalities can sustain themselves.

Beginning in 1609, Jesuit missions were established in the Guaraní region of
South America that overlaps modern day Argentina, Paraguay, and Brazil. In addi-
tion to religious conversion, the missionaries undertook educational efforts among
the indigenous people. However, due to political upheaval in Spain and Portugal,
the missions abruptly ended in 1767-68 and the missionaries were expelled. How
long after this date would we expect the geographic inequalities introduced by
Jesuit presence to persist? Perhaps a generation or two? Remarkably, the Jesuit
effect on educational attainment has been found to persist 250 years later: areas
closer to a former Mission have 10-15% higher literacy rates as well as 10% higher
incomes. The study, by Felipe Valencia Caicedo, makes use of a clever idea to
argue that the mission locations were essentially random, making this a natural
experiment.407 Another study of the long-run persistence of inequality shows the
present-day effects of a system of colonial forced labor in Peru in Bolivia between
1573 and 1812.408

More evidence for the long-run persistence of inequality comes from the city of
Florence, based on a unique dataset containing tax-related data for all individuals
from the year 1427. A working paper finds that surnames associated with wealthier
individuals in the dataset are associated with wealthier individuals today, six
hundred years later.409

While these are just a few examples, research shows that persistence of in-
equality over generations along social and geographic lines is the norm. Yet it
is not widely appreciated. For example, Americans believe that an individual
born into the bottom quintile of the income distribution has a 1-in-6 chance of
rising to the top quintile but the observed likelihood is 1-in-20.410 Mobility in the
U.S. has decreased since the 1980s, and is lower for Black Americans than White
Americans.411

These inequalities are significant because of their magnitude in addition to
their persistence. Median income of Black Americans is about 65% that of White
Americans.412 Wealth inequality is much more severe: the median wealth of Black
households is about 11% that of White households. A data analysis combined
with simulations suggests that the gap may never close without interventions such
as reparations.413 Most Americans are not aware of this gap: on average, survey
respondents estimated the wealth of a typical Black family to be about 90% of that
of a typical White family.414

Turning to gender, full-time, year-round working women earned 80% of what
their male counterparts earned.415 Geographic inequalities also exist. For example,
the richest and poorest census tracts in the United States differ in average income
by a factor of about 30.416
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Machine learning and structural discrimination

For a book about machine learning, we’ve covered a lot of ground on discrimination
and inequality in society. There’s a reason. To understand fairness, it isn’t enough
to think about the moment of decision making. We also need to ask: what impact
does the adoption of machine learning by decision makers have in long-lasting
cycles of structural inequality in society? Does it help us make progress toward
enabling equality of opportunity, or other normative ideals, over the course of
people’s lives? Here are some observations that can help answer those questions.

Predictive systems tend to preserve structural advantages and disadvantages

Predictive systems tend to operate within existing institutions. When such institu-
tions perpetuate inequality due to structural factors, predictive systems will only
reify those effects, absent explicit intervention. Predictive systems tend to inherit
structural discrimination because the objective functions used in predictive models
usually reflect the incentives of the organizations deploying them. As an example,
consider a 2019 study found strong racial bias in a system used to identify patients
with a high risk of adverse health outcomes, in the sense that Black patients were
assigned lower scores compared to equally at-risk White patients.384 The authors
found that this happened because the model was designed to predict healthcare
costs instead of needs, and the healthcare system spends less caring for Black
patients than White patients even when they have the same health conditions.

Suppose a firm makes hiring decisions based on a model that predicts job
performance based on educational attainment. Imagine a society where students
from higher-income families, on average, have had better educational opportunities
that translate to greater job skills. This is not a measurement bias in the data
that can be corrected away: education level genuinely predicts job performance.
Thus, an accurate predictive system will rank higher-income candidates higher on
average.

The structural effect of such systems become clear when we imagine every
employer applying similar considerations. Candidates with greater educational
opportunities end up with more desirable jobs and higher incomes. In other words,
predictive systems have the effect of transferring advantages from one phase of life
to the next, and one generation to the next.

This phenomenon shows up in less obvious ways. For instance, online ad
targeting is based on the assumption that differences in past behavior between
users reflect differences in preferences. But they might also result from differences
in structural circumstances, and there is no way for targeting engines to tell the
difference. This helps explain why ads, including job ads, may be targeted in ways
that reinforce stereotypes and structural discrimination.417

This aspect of predictive systems is amplified by compounding injustice.418, 419

That is, individuals are subject to a series of decisions over the course of their lives,
and the effects of these decisions both accumulate and compound over time. When
a person receives (or is denied) one opportunity, they are likely to appear more (or
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less) qualified at their next encounter with a predictive system.

Machine learning systems may make self-fulfilling predictions

Suppose we find that chess skill is correlated with productivity among software
engineers. Here are a few possible explanations: 1. Chess skill makes one a better
software engineer. 2. There are underlying cognitive skills that make one better
at both. 3. College professors hold stereotypes about chess skills and software
engineering, and steered students good at chess into computer science courses.
4. People with more leisure time were both able to pursue chess as a hobby and
devote time to improving their software engineering skills.

Standard supervised learning does not distinguish between these causal paths.
Regardless of the correct causal explanation, once a large swath of employers start
using chess skill as a hiring criterion, they contribute to the perpetuation of the
observed correlation. That is because applicants who are better at chess will have
better opportunities for software engineering positions in this world, and these
opportunities will allow them to develop their software engineering skills.

Machine learning automates the discovery of correlations such as the above.
When we deploy those correlations as decision criteria, we alter the very phenomena
that we are supposedly measuring. In other words, using non-causal variables as
decision criteria may give them causal powers over time. This is not limited to
machine learning: sociologists have long recognized that stereotypes that are used
to justify discrimination may in fact be produced by that discrimination.420

Algorithmic recommendation systems may contribute to segregation

Even small preferences for homogeneous neighborhoods can lead to dramatic large-
scale effects. In the Appendix, we discuss a toy model of residential segregation
showing such effects. But what about the online world, e.g., online social networks?
The phenomenon of people making friends with similar others (online or offline)
is called homophily.

In the early days of social media, there was a hope—now seen as naive—that in
the online sphere there would be no segregation due to the ease with which people
can connect with each other. Instead, we observe similar patterns of homophily
and segregation online as offline. This is partly because real-world relationships
are reflected online, but in part it is because segregation emerges through our
online preferences and behaviors.421

As social media has matured, concerns arising from homophily have expanded
from demographic segregation to ideological echo chambers. The causal mech-
anisms behind polarized online discourse and the role of recommendation algo-
rithms are being researched and debated (see the Testing chapter), but there is no
doubt that online media can have structural effects.
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Machine learning may lead to homogeneity of decision making

If a company hires only people whose names begin with certain letters of the
alphabet, it may seem absurd but not necessarily a cause for alarm. One reason
behind this intuition is that we expect that the effect of any such idiosyncratic
policies will cancel out, given that job candidates have many firms to apply to. If,
on the other hand, every employer adopted such a policy, then the experience of
job seekers becomes radically different.

Machine learning results in more homogeneous decision making compared
to the vagaries of individual decisions. Studies of human behavior show that
human decisions have a lot of “noise”.5 Removing the noise is one of the main
attractions of statistical decision making. But there are also risks. If statistical
decision making results in similar decisions being made by many decision makers,
otherwise-idiosyncratic biases could become amplified and reified to the point
where they create structural impediments.54

Homogeneity can happen in many ways. At a high level, if many machine
learning systems use the same training data and the same target variable, they will
make roughly the same classifications, even if the learning algorithms are very
different. Intuitively, if this weren’t the case, one could make more accurate classifi-
cations by ensembling their predictions. For a stark illustration of homogeneous
predictions from the domain of predicting life outcomes, see the Fragile Families
Challenge.90

Alternatively, many decision makers could use the same underlying system.
Kleinberg and Raghavan call this situtation algorithmic monoculture.423 There are
anecdotes of job seekers being repeatedly screened out of jobs on the basis of
personality tests, all offered by the same vendor.424

Even individual algorithmic systems may have such an outsized influence in
society that their policies may have structural effects. The most obvious example
are systems adopted by the state, such as a predictive policing system that leads to
the overpolicing of low-income neighborhoods.

But it is private platforms, especially those with a global scale, where this
effect has been most prominent. Take content moderation: a small number of
social media companies together determine which types of speech can be a part of
mainstream online discourse and which communities are able to mobilize online.
Platform companies have faced criticism for allowing content that incites violence
and, conversely, for being overzealous in deplatforming individuals or groups.

In some cases, platform policies are shaped by the capabilities and limitations
of machine learning.425 For example, algorithms are relatively good at detecting
nudity but relatively poor at detecting context. Companies such as Facebook have
had broad bans on nudity without much attention to context, often taking down
artwork and iconic historical images.

5See.422 The article makes both a descriptive claim about the inconsistency of human decisions
as well as a normative claim that inconsistent decision making is poor decision making. The latter
claim can be contested along many lines, one of which we pursue here.
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Machine learning shifts power

Like all technologies, machine learning shifts power. To make this more precise,
we analyze the adoption of machine learning by a bureaucracy. We don’t mean the
term bureaucracy in its colloquial, pejorative sense of an inefficient, rule-bound
government agency. We rather use the term as social scientists do: a bureaucracy
is a public or private entity in which highly-trained workers called bureaucrats,
operating in a hierarchical structure, make decisions in a way that is constrained by
rules and policies but also requires expert judgment. Firms, universities, hospitals,
police forces, and public assistance programs are all bureaucracies to various
degrees. Most of the decision making scenarios that motivate this book are situated
in bureaucracies.

To understand the effect of adopting machine learning, we consider five types of
stakeholders: decision subjects, the people who provide the training data, domain
experts, machine learning experts, and policy makers. Our analysis builds on a
talk by Pratyusha Kalluri.426

Machine learning as generally implemented today shifts power away from the
first three categories. By representing decision subjects as standardized feature
vectors, statistical decision making removes their agency and ability to advocate
for themselves. In many domains, notably the justice system, this ability is central
to the rights of decision subjects. Even in a relatively less consequential domain
such as college admissions, the personal statement provides this ability and is a
key component of the evaluation.

People who provide training data may have knowledge about the task at hand,
but provide only their behavior as input to the system (think of email recipients
clicking the “spam” button). Machine learning instead constructs a form of knowl-
edge in a centralized way. In contrast, domain experts learn in part from the
knowledge and lived experience of the individuals they interact with. Admittedly,
experts such as physicians are often criticized for devaluing the knowledge and
experience of decision subjects (patients).427 But the fact that such a debate is
happening at all is evidence of the fact that patients have at least some power in
the traditional system.428

The role of domain experts is also more limited compared to traditional de-
cision making where the discretion and judgment of such experts holds sway.
In supervised machine learning, domain expertise is primarily needed in two
of the steps: formulating the problem and task, and labeling training examples.
In practice, domain expertise is often not valued by tool developers, and hence
experts’ roles are even more circumscribed. For example, one study found that
based on 68 interviews, “developers conceived of [domain experts] as corrupt, lazy,
non-compliant, and datasets themselves, pursuing surveillance and gamification to
discipline workers to collect better quality data.”429

The fairness implications of this shift in power are complex. In government
bureaucracies, the power wielded by “street-level bureaucrats” such as police
officers and social service caseworkers—the people who translate policy into
individual decisions—can be abused, and removing their discretion is often seen
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as a fairness intervention. Yet the discretion and human intelligence of these
decision makers can also be a vital fairness-promoting element due to the existence
of extenuating factors or novel circumstances not seen in the training data or
covered in existing policies.430, 59 And when the system itself is unjust, the humans
tasked with implementing it can be an important source of resistance through
non-compliance or whistle-blowing.

In constrast to street-level bureaucrats, machine learning empowers policy
makers or centralized decision makers — those at the top of the bureaucracy.
Consider a risk prediction tool used by a child protection agency to screen calls.
Depending on the agency’s budget and other factors, the decision maker may want
to screen in a higher or lower proportion of calls. With a statistical tool, such a
policy change can be implemented instantly, and is enormously easier than the
alternative of retraining hundreds of case workers to adjust their mental heuristics.
This is just one example that illustrates why such tools have proven so attractive to
those who make the decision to deploy them.

Machine learning experts, of course, tend to have a central role. Stakeholders’
requirements have to be translated into implementation by these experts; whether
intentionally or unintentionally, there are often substantial gaps between the desired
policy and the policy that’s realized in practice.280 In every automated system, there
is something lost in the translation of policy from human language to computer
code. For example, there have been cases where software miscalculated prison
inmates’ eligibility for early release, with harrowing consequences including being
held in prison too long and being returned to prison after being released.431, 432

But in those classic automated systems, these gaps tend to be mistakes that are
generally obvious upon manual inspection (not that it is any comfort to those
who are harmed). But when machine learning is involved, the involvement of the
expert is often necessary even to recognize that something has gone wrong. This
is because the policy tends to be more ambiguous (what does “high risk” mean?)
and because deviations from the policy become apparent only in aggregate.

In addition, decision makers often abdicate their power to tool developers, mak-
ing them even more powerful. Mulligan and Bamberger explain how government
agencies acquire machine learning systems through procurement processes — the
same processes used to secure a contractor to build a bridge.433 The procurement
mindset ignores the fact that the resulting products are used to make consequential
decisions, i.e. effectively make policy. Procurement emphasizes factors such as
price and risk avoidance rather than transparency or oversight of decision making.

Structural interventions for fair machine learning

The fact that machine learning may contribute to structural discrimination moti-
vates the need for interventions that are similarly broad in scope. We call these
structural interventions: changing the way machine learning gets built and de-
ployed. The changes we have in mind go beyond the purview of any single
organization, and require collective action. This could take the form of a broad
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social movement, or other collectives including communities, workers, researchers,
and users.

Reforming the underlying institutions

One approach is to focus on the underlying institution rather than the technology,
and change it so that it is less prone to adopt harmful machine learning tools
in the first place. For example, shifting the focus of the criminal justice system
from incapacitation to rehabilitation could decrease the demand for risk prediction
tools.434 Many scholars and activists distinguish between reform and abolition
(sometimes called non-reformist reform), abolition being a more radical and trans-
formative approach.435, 436, 193 For our purposes, however, they both have the effect
of centering the intervention on the institution rather than the technology.

In many domains, the very purposes and aims of our institutions remain
contested. For example, what are the goals of policing? Commonly accepted goals
include deterrence and prevention of crime, ensuring public safety and minimizing
disorder, and bringing offenders to justice; they might also include broader efforts
to improve the health and vitality of communities. The relative importance of
these goals varies between communities and over time. Thus, formulating police
allocation decisions as an optimization problem, as predictive policing systems do,
involves taking positions on these deeply contested issues.

History shows us that many institutions that may feel like fixtures of modern
society, such as higher education, have in fact repeatedly redefined their goals
and purposes to adapt to a changing world. In fact, sometimes the impetus for
such shifts was to more effectively discriminate. In the early twentieth century, elite
American universities morphed from treating size (in terms of enrollment) as a
source of prestige to selectivity. A major reason for this change was to curtail the
rising proportion of Jewish students without having to introduce explicit quotas;
the newfound mission of being selective enabled them to emphasize traits like
character and personality in admissions, which in turn allowed much leeway for
discretion. In fact, this system that Harvard adopted in 1926 was the origin of the
holistic approach to admissions that continues to be contentious today, as Jerome
Karabel explains in the book The Chosen.437

Some scholars have gone beyond the position that intervention to address
algorithmic harms should focus on the underlying institution, and argued that the
adoption of automated decision making actually enables resistant institutions to
stave off necessary reform. Virginia Eubanks examines four public assistance pro-
grams for poor people in the United States—food assistance, Medicaid, homeless-
ness, and at-risk children.47 In each case there are eligibility criteria administered
automatically, some of which use statistical techniques. The book documents the
harmful effects of these systems, including the punitive effects on those deemed
ineligible; the disproportionate impact of those burdens on low-income people of
color, especially women; the lack of transparency and seeming arbitrariness of the
decisions; and the tracking and surveillance of the lives of poor that is necessary
for these systems to operate.
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These problems may be fixable to some extent, but Eubanks has a deeper
critique: that these systems distract from the more fundamental goal of eradicating
poverty (“We manage the individual poor in order to escape our shared responsibil-
ity for eradicating poverty”). In theory, the two approaches may coexist. In practice,
Eubanks argues, these systems legitimize the idea that there is something wrong
with some people, hide the underlying structural problem, and foster inaction.
They also incur a high monetary cost that could otherwise be put toward more
fundamental reform.

Community rights

Harmful technologies are often legally justified under a notice-and-consent frame-
work which rests on an individualistic conception of rights and is ill-equipped
to address collective harms. For example, police departments obtain footage en
masse from residential security cameras with the consent of residents through
centralized platforms like Amazon Ring.438 However, consent is not a meaningful
check in this scenario, because the people who stand to be harmed by police abuse
of surveillance footage—such as protesters or members of racial minorities who
had the police called on them for “acting suspiciously”—are not the ones whose
consent is sought or obtained.

This gap is especially salient in machine learning applications: even if a classi-
fier is trained on data provided with consent, it may be applied to nonconsenting
decision subjects. An alternative is to allow groups, such as geographic com-
munities, the right to collectively consent to or reject the adoption of technology
tools. In response to the police use of facial recognition, civil liberties activists
advocated for a community right to reject such tools; the success of this advocacy
has led to various local bans and moratoria.439 In contrast, consider online targeted
advertising, another technology that has faced widespread dissent. In this case,
there are no analogous collectives who can organize effective resistance, and hence
attempts to reject the technology have been much less successful.440

Beyond collective consent, another goal of community action is to obtain a
seat at the table in the design of machine learning systems as stakeholders and
participants whose expertise and lived experience shapes the conception and
implementation of the system rather than mere data providers and decision subjects.
Among other benefits, this approach would make it easier to foresee and mitigate
representational harms—issues such as demeaning categories in computer vision
datasets or image search results that represent offensive stereotypes. But there
are also potential risks to participatory design: it may create further burdens for
members of underrepresented communities, and it may act as a smokescreen for
organizations resisting meaningful change. It is essential that participation be
recognized as labor and be fairly compensated.441
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Regulation

Regulation that promotes fair machine learning can take the form of applying
existing laws to decision systems that incorporate machine learning, or laws that
specifically address the use of technology and its attendant harms. Examples of the
latter include the above-mentioned bans on facial recognition, and restrictions on
automated decision making under the European Union’s General Data Protection
Regulation (GDPR). Both flavors of regulation are evolving in response to the rapid
adoption of machine learning in decision making systems. Regulation is a major
opportunity for structural intervention for fair machine learning. Yet, because of
the tendency of law to conceptualize discrimination in narrow terms, its practical
effect on curbing harmful machine learning largely remains to be seen.442

The gap between the pace of adoption of machine learning and the pace of law’s
evolution has led to attempts at self-regulation: a 2019 study found 84 AI ethics
guidelines around the world.443 Such documents don’t have the force of law but
attempt to shape norms for organizations and/or individual practitioners. While
self-regulation has been effective in some fields such as medicine, it is doubtful if AI
self-regulation can address the thorny problems we have identified in this chapter.
Indeed, industry self-regulation generally aims to forestall actual regulation and
the structural shifts it may necessitate.6

Workforce interventions

Machine learning shifts power to machine learning experts, which makes the
ML workforce an important locus of interventions. One set of efforts is aimed at
enabling more people to benefit from valuable job opportunities in the industry445

and to fight imbalances of power within the workforce—notably, between technol-
ogy experts and those who perform other roles such as annotation.446 Another set
of efforts seeks to align the uses of ML with ethical values of the ML workforce.
The nascent unionization movement in technology companies seems to have both
objectives.

While a more diverse workforce is morally valuable for its own sake, it is
interesting to ask what effect it has on the fairness of the resulting products. One
experimental study of programmers found that the gender or race of programmers
did not impact whether they produced biased code.447 However, this is a lab study
and should not be seen as a guide to the effects of structural interventions. For
example, one causal path by which workforce diversity could impact products (not
captured in the study’s design) is that a team with a diversity of perspectives may
be more willing to ask critical questions about whether a product should be built
or deployed.

Another workforce intervention is education and training. Ethics education
for computer science students is on the rise, and a 2018 compilation included
over 200 such courses.448 A long-standing debate is about the relative merits
of stand-alone courses and integration of ethics into existing computer science

6For a deeper critique of industry-led statements of principles see.444
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courses.449 Professional organizations such as the Association for Computing
Machinery (ACM) have had codes of ethics for several decades, but it’s unclear if
these codes have had a meaningful impact on practitioners.

In many professional fields including some engineering fields, ethical responsi-
bilities are enforced in part through licensing of practitioners. Professionals such
as doctors and lawyers must master a body of professional knowledge, including
ethical codes, are required by law to pass standardized exams before being licensed
to practice, and may have that license revoked if they commit ethical transgressions.
This is not the case for software engineering. At any rate, the software engineering
certification standards that do exist450 have virtually no overlap with the topics in
this book.

The research community

The machine learning research community is another important locus for reform
and transformation. The most significant push for change has been the ongoing
fight for treating research topics such as fairness, ethics, and justice as legitimate
and first-rate. Traditionally, a few topics in machine learning such as optimization
algorithms have been considered “core” or “real” machine learning, and other
topics—even dataset construction—seen as peripheral and less intellectually serious.
Birhane et al. performed a text analysis of papers at premier machine learning
conferences, ICML and NeurIPS, and found that most papers justify themselves
by appealing to values such as performance and generalization, and only 1%
mentioned potential negative effects.451

A few other key debates: should all machine learning researchers be required
to reflect on the ethics of their research?452 Is there too much of a focus on fixing
bias as opposed to deeper questions about power and justice453? How to center
the perspectives of people and communities affected by machine learning systems?
What is the role of industry research on fair machine learning given the conflicts of
interest?

Organizational interventions for fairer decision making

The structural interventions we’ve discussed above require social movements or
other collective action and have been evolving on a timescale of years to decades.
This is not to say that an organization should throw up its hands and wait for
structural shifts. A plethora of interventions are available to most types of decision
makers. This section is an overview of the most important ones.

As you read, observe that the majority of interventions attempt to improve
outcomes for all decision subjects rather than viewing fairness as an inescapable
tradeoff. One reason this is possible is that many of them don’t operate at the mo-
ment of decision. Note, also, that evaluating the effects of interventions—whether
with respect to fairness or other metrics—generally requires causal inference. Fi-
nally, only a small subset of potential fairness interventions can be implemented in

221



Figure 8.2: A summary of major types of organizational interventions

the framework of machine learning. The others focus on organizational or human
practices rather than the technical subsystem involved in decision making.

Redistribution or reallocation

Redistribution and reallocation are terms that refer to interventions that modify a
decision-making process to introduce an explicit preference for one or more groups,
usually groups considered to be disadvantaged. When we talk about fairness
interventions, this might be the kind that most readily comes to mind.

When applied to selection problems where there is a relatively static number of
slots, as is typical in hiring or college admissions, a plethora of algorithmic fairness
interventions reduce to different forms of reallocation. This includes techniques
such as adding a fairness constraint to the optimization step, or a post-processing
adjustment to improve the scores of the members of the disadvantaged groups.
This is true regardless of whether the goal is demographic parity or any other
statistical criterion.

Reallocation is appealing because it doesn’t require a causal understanding
of why the disparity arose in the first place. By the same token, reallocation is a
crude intervention. It is designed to benefit a group—and it has the advantage
of providing a measure of transparency by allowing a quantification of the group
benefit—but most reallocation procedures don’t incorporate a notion of deserv-
ingness of members within that group. Often, reallocation is accomplished by
a uniform preference for members of the disadvantaged group. Alternatively, it
may be accomplished by tinkering with the optimization objective to incorporate a
group preference. In this approach, distributing the fruits of reallocation within the
group is delegated to the model, which may end up learning a non-intuitive and
unintended allocation (for example, an intersectional subgroup may end up further
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disadvantaged compared to a no-intervention condition). At best, reallocation
methods will aim to ensure that relative ranking within groups is left unchanged.

As crude as reallocation is, another intervention with an even worse tradeoff is
to omit features correlated with group identity from consideration. To be clear, if the
feature is statistically, causally, or morally irrelevant, that may be a good reason for
omitting it (Chapter 2). But what if the feature is in fact relevant to the outcome? For
example, suppose that people who contribute to open-source software projects tend
to be better software engineers. This effect acts through a morally relevant causal
path because programmers obtain useful software-engineering skills through open-
source participation. Unfortunately, many open-source communities are hostile
and discriminatory to women and minorities (this is perhaps because they lack the
formal organizational structures that firms use to keep interpersonal discrimination
in check to some degree). Recognizing this, a software company could either
explicitly account for it in hiring decisions or simply omit consideration of open-
source contributions as a criterion. If it does the latter, it ends up with less qualified
hires on average; it also disadvantages the people who braved discrimination to
develop their skills, arguably the most deserving group.

Omitting features based on statistical considerations without a moral or causal
justification is extremely popular in practice because it is simple to implement,
politically palatable, and avoids the legal risk of disparate treatment.

Combatting interpersonal discrimination

Rather than intervene directly on the outputs, organizations can try to improve the
process of decision making. In many cases, discriminators are surprisingly candid
about their prejudices in surveys and interviews.324 Can they perhaps be trained
out of their implicit or overt biases? This is the idea behind prejudice reduction,
often called diversity training.

But does diversity training work? Paluck & Green conducted a massive review
of nearly a thousand such interventions in 2009.454 The interventions include
promoting contact with members of different groups, recategorization of social
identity, explicit instruction, consciousness raising, targeting emotions, targeting
value consistency and self-worth, cooperative learning, entertainment (reading,
media), discussion and peer influence. Unfortunately, only a small fraction of the
published studies reported on field experiments; Paluck & Green are dubious about
both observational field studies and lab experiments. Overall, the field experiments
don’t provide much support for the effectiveness of diversity interventions. That
said, there were many promising lab methods that hadn’t yet been tested in the
field. A more recent review summarizes the research progress from 2007 to 2019.455

Minimizing the role of human judgment via formalization

Approaches like implicit bias training seek to improve the judgment of human
decision makers, but ultimately defer to that judgment. In contrast, formalization
aims to curb judgment and discretion.
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The simplest formalization technique is to withhold the decision subject’s
identity (or other characteristics considered irrelevant) from the decision maker.
Although this idea dates to antiquity, in many domains the adoption of anonymous
evaluation is a recent phenomenon and has been made easier by technology.456

Two major limitations of this approach are the ubiquitous availability of proxies
and the fact that anonymization is not feasible in many contexts such as in-person
hiring interviews.7

A more ambitious approach is rule-based or statistical decision making that
removes human discretion entirely. For example, removing lender discretion in
loan underwriting was associated with a nearly 30% increase in the approval rates
of minority and low-income applicants, while at the same time increasing predictive
accuracy (of the risk of default).1 Human decision makers tend to selectively ignore
credit history irregularities of White applicants.458

In some ways, machine learning can be seen as a natural progression of the
shift from human judgment to rule-based decision making. In machine learning,
the discovery of the rule—and not just its application—is deferred to the data and
implemented by an automated system. Based on this, one might naively hope that
machine learning will be even more effective at minimizing discrimination.

However, there are several counterarguments. First, claims of the superiority
of statistical formulas over human judgment, at least in some domains, have been
questioned as being based on apples-to-oranges comparisons because the human
experts did not view their role as pure prediction. For example, judges making
sentencing decisions may consider the wishes of victims, and may treat youth
as a morally exculpatory factor deserving of leniency.2 Second, there has been a
recognition of all the ways in which machine learning can be discriminatory, which
is of course a central theme of this book. Third, there are numerous potential
drawbacks such as a loss of explainability and structural effects that are not
captured by the human-machine comparisons.

Perhaps most significantly, incomplete formalization can simply shift the abuse
of discretion elsewhere. In Kentucky, the introduction of pretrial risk assessment
increased racial disparities for defendants with the same predicted risk. The effect
appears to be partly because of differential adoption of risk assessment in counties
with different racial demographics, and partly because even the same judges are
more likely to override the recommended decision for Black defendants compared
to White defendants.? .]stevenson2018assessing, albright2019if In Ontario, social
service caseworkers described how they manipulate the inputs to the automated
system to get the outcomes they want.4598 In Los Angeles, police officers used
many strategies to resist being managed by predictive policing algorithms.460

The most pernicious effect of formalization as a fairness intervention is that it

7Even in these contexts, blinding of attributes that are not readily inferrable can be effective.
Indeed, it is frowned upon to inquire about candidates’ marital status during job interviews, and
such inquiries may be treated as evidence of intent to discriminate.457

8Caseworkers report doing so in order to work around the limitations and non-transparency of
the automated system to achieve just outcomes for clients. The difficulty of distinguishing between
abuse of discretion and working around an overly rigid system further illustrates the double-edged
nature of formalization as a fairness intervention.
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may shift discretion to earlier stages of the process, making discrimination harder to
mitigate. Examples abound. Mandatory minimum sentencing guidelines for drug
possession in the United States in the 1980s were justified in part as a way to combat
judges’ prejudices and arbitrariness,461 but are now widely recognized as overly
punitive and structurally racist. One way in which such laws can encode race is the
100-to-1 sentencing disparity between powder and crack cocaine, the popularity of
the two forms of the same drug differing by income and socioeconomic status.462

A very different kind of example comes from Google, which has had a vaunted,
highly formalized process for recruiting in order to combat unconscious bias and
enhance the quality of decisions.463 But recruiters have argued that this process in
fact bakes in racial discrimination because it incorporates a ranking of colleges in
which Historically Black Colleges and Universities are not ranked at all.464

The Harvard admissions lawsuit from Chapter 5 is another case study of
formalization versus holistic decision making. Plaintiffs point out that the admis-
sions criteria include subjective assessments of personality traits such as likability,
integrity, helpfulness, kindness, and courage. Harvard scored Asian-American
applicants on average far lower on these traits than any other racial group. Har-
vard, on the other hand, argues that evaluating the “whole person” is important
to identify those with unique life experiences that would contribute to campus
diversity, and that a consideration of subjective traits is a necessary component of
this evaluation.

Procedural protections

Diversity training and formalization are examples of procedural fairness interven-
tions. There are many other procedural protections: notably, making the process
transparent, providing explanations of decisions, and allowing decision subjects
to contest decisions that may have been made in error. As we discussed above,
procedural protections are more important when machine learning is involved
than for other types of automated systems.

United States law emphasizes procedural fairness over outcomes. This is
one reason for the great popularity of diversity training despite its questionable
effectiveness.465 When the decision maker is the government, the legal conception
of fairness is even more focused on procedure. For example, there is no notion of
disparate impact under United States constitutional law.

While some procedural interventions such as diversity training have been
widely adopted, many others remain rare despite their obvious fairness benefits.
For example, few employers offer candid explanations for job rejection. Decision
makers turning to automated systems are often looking to cut costs, and may hence
be especially loath to adopt procedural protections. An illustrative scenario from
Amazon, which uses an automated system to manage contract delivery drivers,
including contract termination: insiders reported that “it was cheaper to trust the
algorithms than pay people to investigate mistaken firings so long as the drivers
could be replaced easily.’ ’466

There are many examples of fairness concerns with automated systems for
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which only procedural protections can be an effective remedy (other than scrapping
the system altogether). For example, Google’s policy is to suspend users across its
entire suite of services if they violate its terms of service. There are many anecdotal
reports from users who have lost years’ worth of personal and professional data,
insist that Google’s decision was made in error, and that Google’s appeal process
did not result in a meaningful human review of the decision.

Outreach

The rest of the interventions are not about changing the decision making process
(or outcomes). Instead, they change something about the decision subjects or the
organizational environment.

A 2018 study by Dynarski, Libassi, Michelmore, and Owen sought to address
the puzzling phenomenon that low-income students tend not to attend highly
selective colleges, even when their strong academic credentials qualify them for
admission and despite the availability of financial aid that would make it cheaper
to attend a selective institution.467 The authors designed an intervention in which
they sent flyers to low-income high-school students informing them about a new
scholarship at the University of Michigan, and found that compared to a control
group, these students were more than twice as likely to apply as well as enroll at
the University. The effect was entirely due to students who would have otherwise
attended less selective colleges or not attended college at all. The targets of outreach
were highly qualified students identified based on standardized test scores (ACT
and SAT), which allowed the university to guarantee financial aid conditional on
admission. It is worth reiterating that this was a purely informational intervention:
the scholarship was equally available to students in the control group, who received
only postcards listing University of Michigan application deadlines.

To the extent that disparities are due to disadvantaged groups lacking knowl-
edge of opportunities, informational interventions should decrease those disparities,
but this point doesn’t appear to be well-researched. For example, the Michigan
study targeted the intervention at low-income students, so it doesn’t address the
question of whether informing all students would close the income gap.

Intervening on causal factors

If we understand the causal factors that lead to underperformance of some individ-
uals or groups, we can intervene to mitigate them. Like informational interventions,
this approach seeks to help all individuals rather than simply minimize disparities.
This type of intervention is extremely common. Some examples: job training
programs for formerly incarcerated people to improve welfare and decrease the
chances of recidivism; efforts to bolster math and science education to address an
alleged labor shortage of engineers (a so-called pipeline problem); and essentially
all of public health and preventive healthcare. The use of randomized controlled
trials to identify and intervene on the causes of poverty has been so influential in
development economics that it led to the 2019 Nobel Prize to Duflo, Banerjee, and
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Kremer.
In a competitive market, such as an employer competing for workers, this

intervention may not pay off for an individual decision maker from an economic
perspective: job seekers who have benefited from the intervention may choose
to join other firms instead. Many approaches have been used to overcome this
misalignment of incentives. Firms may act collectively, or the state may fund the
intervention. If a firm is large enough, the overall payoffs could be so high relative
to the cost of the intervention that the reputational benefit to the firm may be
sufficient to justify it.

Modifying the organizational environment

If decision makers have many opportunities to intervene before the point of decision
(e.g. hiring), they also have opportunities to intervene after that point to ensure
that individuals fulfill their potential. If a firm finds that few minority employees
are successful, it may be because the workplace is hostile and discriminatory.

In other cases, some individuals or groups may need additional accommoda-
tions to remedy past disadvantages or because of morally irrelevant differences.
A few examples: remedial courses for disadvantaged students, a peer group for
first-time college students, need-based scholarships, a nursing mother’s room in a
workplace, and disability accommodations.

Accommodation isn’t simply redistribution in disguise: it does not (or need not)
involve an explicit preference for the disadvantaged group. Even if the accommo-
dation is made available to everyone, the disadvantaged group will preferentially
benefit from it. This is obvious in the case of, say, disability accommodations. In
other cases this is less obvious, but no less true. Even if financial aid were available
to all students at a university, it would differentially benefit low-income students.

However, the actual effects of accommodations can be hard to predict and must
be carefully measured empirically. A notable example comes from a study showing
that men benefit from gender-neutral clock-stopping policies.468 Such policies in
universities allow both men and women to add time to the tenure clock with the
birth of a child. While they are often adopted in the interest of fairness, the study
shows that they increase men’s tenure rates and lower women’s; this is presumably
because men are able to be more productive during their extended time due to
differences in child-care responsibilities or the impact of the birth itself. That said,
note that the policy has two fairness goals: to mitigate the adverse career impact
of childbirth and to decrease gender disparities in said impacts. Presumably the
policy still meets the first goal even if it fails the second.

Here’s a stark example of how organizational policies can cause people to fail
and how easily they can be remedied. In New York City, there are approximately
300,000 cases of low level offenses every year. The defendants are required to
appear in court (except for offenses of the lowest severity which may be resolved by
mail). If they fail to appear, arrest warrants are automatically issued. Historically,
a remarkable 40% of defendants fail to appear in court. The resulting negative
consequences of Failure to Appear (FTA) are both severe and unequally distributed:
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for instance, members of groups that are subject to overpolicing are more likely
to be arrested. Remarkably, a study by Fishbane, Ouss, and Shah found that FTA
rates decreased from 41% to 26% simply by redesigning the summons form to be
less confusing and sending defendants text messages shortly before their court
dates469!

Concluding thoughts

We looked at seven broad types of fairness interventions that organizations can
deploy. The majority of these interventions potentially improve opportunity for all
decision subjects as they are motivated by some underlying injustice rather than
merely mitigating some disparity. In fact, interventions that aim to address an
underlying injustice might sometimes increase certain disparities between groups—
a possibility that would be morally justified under a non-comparative notion of
fairness that calls for treating each subject as they ought to be treated.470

Comparative notions of fairness are appealing to focus on because they are easy
to quantify, but we shouldn’t forget the deeper questions. A domain where this
seems to have happened is algorithmic hiring. Tools used in algorithmic hiring
utilize situational judgment tests, personality tests, and sometimes much more
dubious techniques—increasingly involving machine learning—for screening and
selecting candidates. Firms adopt such tools to cut recruitment costs, especially
for low-wage positions where the cost of hiring a worker through the traditional
process can be seen as significant in relation to a worker’s contribution to the firm’s
revenue over the course of the period of their employment.

These tools are problematic for many reasons. While they aim to formalize the
hiring process, they often use attributes that are morally and causally irrelevant to
job performance. HireVue, for example, previously relied on facial expressions and
intonations in a person’s voice as part of its automated assessment. They also fail
to take a broad view of discrimination. Focusing narrowly on minimizing dispari-
ties in hiring rates across groups leaves unaddressed what kind of environment
employees will encounter once hired. If job applicants from certain groups were
previously predicted to perform poorly in a certain workplace, the employer should
strive to understand the reasons for this difference in success, rather than simply
trying to find members of these groups that might be able to succeed under such
unfavorable, unwelcoming, or hostile conditions. Parity-promiting interventions
change the selection process, but preserve the organizational status quo, endorsing
the idea that the candidates that have been selected should be able to deal with
these conditions sufficiently well to be as productive as their peers who don’t
face similar challenges. Other productive—and potentially less harmful—forms of
intervention include on-the-job training (which might be understood as a way of
intervening on causal factors), meaningful feedback for rejected applicants (which
would provide some degree of procedural protection, but also help guide appli-
cants’ future investment in their own development), and a strategic approach to
sourcing candidates who firms with more accurate tools might now be better able
to assess.
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The narrow focus on disparities can mean that there is little consideration of
the quality of decisions made by the tools. Tools that simply lack validity raise
a host of normative concerns. Notably, assessments that achieve approximate
demographic parity but continue to suffer from accuracy disparity (also called
differential validity) can set members of certain groups up for failure by expecting
them to be able to perform better than they would be currently prepared to.9

To reiterate, we do not advocate for treating statistical fairness criteria as
constraints, at least in the first instance. That approach assumes that reallocation
is the only available intervention. Instead, if we treat statistical fairness criteria
as diagnostics, we are likely to uncover deeper problems that require remedying.
Unfortunately, these deeper remedies are also harder. They require both causal
inference and normative depth. That is of course why they are often ignored, and
foundational questions remain unaddressed.

A case in point: a 2021 paper by Stevenson & Mayson analyzes the fairness
of pre-trial detention in a non-comparative sense.471 How risky does a defendant
have to be so that the expected benefit to public safety justifies the harm to the
defendant from detention? Using the clever approach of asking survey recipients
to choose between being detained and becoming victims of certain crimes, the
authors conclude that pretrial detention is essentially never justified.

The study’s method is sure to be debated, but the point remains that there have
been relatively few principled, quantitative attempts to justify the risk thresholds
used in pretrial detention. There have been many other calls to end pretrial
detention based on different moral and legal arguments. When such foundational
questions continue to be debated, it would be exceedingly premature to declare a
risk-based pretrial detention system to be “fair” because it satisfied some statistical
criterion.

Chapter notes

The first part of the chapter draws heavily from the sociology of discrimination.
A review of racial discrimination by Pager and Shepherd is a good entry point
into this literature.325 Small and pager distill six lessons from the sociology of
discrimination.397

The complex ways in which discrimination operates — feedback loops that
sustain persistent inequalities, multiple interlocking systems of discrimination that
together structure society — mean that the quantitative tests for discrimination
discussed in the previous chapter frame the question narrowly and are inherently
limited in what they can reveal. For more on the limits of the quantitative approach,
see Narayanan’s talk386 or the discussion in the final section of Lang & Spitzer’s
paper.[lang2020race]

The chapter then turns to the practice of machine learning. To reinforce the idea
that developers of machine learning systems must make many choices requiring
normative judgment throughout the development process, see Jessica Eaglin’s

9See also the discussion of the limitations of independence as a fairness criterion in Chapter 3.
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case study of recidivism risk prediction.472 Turning to the question of what
technologists should do differently in their everyday work, we recommend the
book Human-Centered Data Science by Aragon, Guha, Kogan, Muller, and Neff
[aragon2022human], and Ben Green’s paper urging data scientists to recognize that
their work is political.473

The final part of the chapter argues that most fairness interventions should
target organizational culture and processes rather than tweaking decision criteria.
This means that designing effective fairness interventions requires understanding
the organizations that are meant to adopt them. This is a vast area of sociology; we
give a few samples. Michael Lipsky’s classic text Street Level Bureaucracy discusses
the complex relationship between individual decision makers and the government
agency that they are embedded in.430 Johnson & Zhang deconstruct the process by
which social service bureaucracies make and implement policies, and advocate for
the benefits of formalizing the process through algorithmic decision making.72

As for texts about specific bureaucracies or organizations, Misdemeanorland by
Issa Kohler-Hausmann dives into New York City’s lower criminal courts, and shows
that the system’s purpose and operation is almost diametrically different from how
most people and most textbooks (including this one) conceive of it.474 The books
Pedigree326 and Inside Graduate Admissions327 shed light on the hiring processes at
elite firms and the admissions processes at graduate schools respectively. Uberland
by Alex Rosenblat describes the stories and working conditions of Uber drivers in
the United States and Canada.

Appendix: a deeper look at structural factors

Let us briefly discuss two phenomena that help explain the long-run persistence of
inequality: segregation and feedback loops.

The role of segregation

A structural factor that exacerbates all of the mechanisms of discrimination we
discussed is the segregation of society along the lines of group identity. Segre-
gation arguably enables interpersonal discrimination because increased contact
among groups decreases prejudice toward outgroups—the controversial contact
hypothesis.475

At a structural level, segregation sustains inequality because an individual’s
opportunities for economically productive activities depend on her social capital,
including the home, community, and educational environment. A strand of the
economics literature has built mathematical models and simulations to understand
how group inequalities—especially racial inequalities—arise and persist indefi-
nitely even in the absence of interpersonal discrimination, and despite no intrinsic
differences between groups. In the extreme case, if we imagine two or more groups
belonging to non-interacting economies that grow at the same rate, it is intuitively
clear that differences can persist indefinitely. If segregation is imperfect, do gaps
eventually close? This is sensitive to the assumptions in the model. In Lundberg
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and Startz’s model the gaps close eventually, although extremely slowly.476 In
Bowles et al.’s model, they don’t under some conditions;477 one reason is that the
disadvantaged group might face higher costs of labor-market skill acquisition due
to lower social capital.478

In the United States, after the civil rights legislation of the 1960s and 70s,
residential segregation by race has been decreasing, albeit slowly. On the other
hand, residential segregation by income appears to be increasing.479

The role of feedback loops

There is a classic economic model of feedback loops in the context of a labor
market.321 There are two groups of workers and two types of jobs: high and low
skilled, with high-skilled jobs requiring certain qualifications to perform effectively.
Under suitable assumptions (especially, employers cannot perfectly observe worker
qualifications before hiring them, but only after providing costly on-the-job skills
training) there exists an economic equilibrium in which the following feedback
loop sustains itself:

1. The employer practices wage discrimination between the two groups.
2. As a result, the disadvantaged group achieves lower returns to investment in

qualifications.
3. Workers, assumed to be rational, respond to such a differential by invest-

ing differently in acquiring qualifications, with one group acquiring more
qualifications.

4. The employer—again, under certain rationality assumptions—wage discrimi-
nates because of the observed difference in qualifications.

The significance of this model is that it can explain the persistence of inequality
(and discrimination) without assuming intrinsic differences between the groups,
and without employers discriminating between equally qualified workers. It
should be viewed as showing only the possibility of such feedback loops. Like
any theoretical model, a claim that such a feedback loop explains some actually
observed disparity would require careful empirical validation.
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9
Datasets

It’s become commonplace to point out that machine learning models are only as
good as the data they’re trained on. The old slogan “garbage in, garbage out” no
doubt applies to machine learning practice, as does the related catchphrase “bias in,
bias out”. Yet, these proverbs still understate—and somewhat misrepresent—the
significance of data for machine learning.

It’s not only the output of a learning algorithm that may suffer with poor
input data. A dataset serves many other vital functions in the machine learning
ecosystem. The dataset itself is an integral part of the problem formulation. It
implicitly sorts out and operationalizes what the problem is that practitioners end
up solving. Datasets have also shaped the course of entire scientific communities
in their capacity to measure and benchmark progress, support competitions, and
interface between researchers in academia and practitioners in industry.

If so much hinges on data in machine learning, it might come as a surprise
that there is no simple answer to the question of what makes data good for what
purpose. The collection of data for machine learning applications has not followed
any established theoretical framework, certainly not one that was recognized a
priori.

In this chapter, we take a closer look at popular datasets in the field of machine
learning and the benchmarks that they support. We will use this to tease apart
the different roles datasets play in scientific and engineering contexts. Then we
will review the harms associated with data and discuss how they can be mitigated
based on the dataset’s role. We will conclude with several broad directions for
improving data practices.

We limit the scope of this chapter in some important ways. Our focus will be
largely on publicly available datasets that support training and testing purposes
in machine learning research and applications. Our focus excludes large swaths
of industrial data collection, surveillance, and data mining practices. It also
excludes data purposefully collected to test specific scientific hypotheses, such as,
experimental data gathered in a medical trial.
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A tour of datasets in different domains

The creation of datasets in machine learning does not follow a clear theoretical
framework. Datasets aren’t collected to test a specific scientific hypothesis. In fact,
we will see that there are many different roles data plays in machine learning. As a
result, it makes sense to start by looking at a few influential datasets from different
domains to get a better feeling for what they are, what motivated their creation,
how they organized communities, and what impact they had.

TIMIT

Automatic speech recognition is a machine learning problem of significant com-
mercial interest. Its roots date back to the early 20th century.480

Interestingly, speech recognition also features one of the oldest benchmarks
data sets, the TIMIT (Texas Instruments/Massachusetts Institute for Technology)
data. The creation of the dataset was funded through a 1986 DARPA program on
speech recognition. In the mid-eighties, artificial intelligence was in the middle
of a “funding winter” where many governmental and industrial agencies were
hesitant to sponsor AI research because it often promised more than it could
deliver. DARPA program manager Charles Wayne proposed that a way around
this problem was establishing more rigorous evaluation methods. Wayne enlisted
the National Institute of Standards and Technology to create and curate shared
datasets for speech, and he graded success in his program based on performance
on recognition tasks on these datasets.

Many now credit Wayne’s program with kick starting a revolution of progress
in speech recognition.481482483 According to Kenneth Ward Church,

It enabled funding to start because the project was glamour-and-deceit-
proof, and to continue because funders could measure progress over
time. Wayne’s idea makes it easy to produce plots which help sell
the research program to potential sponsors. A less obvious benefit
of Wayne’s idea is that it enabled hill climbing. Researchers who
had initially objected to being tested twice a year began to evaluate
themselves every hour.

A first prototype of the TIMIT dataset was released in December of 1988

on a CD-ROM. An improved release followed in October 1990. TIMIT already
featured the training/test split typical for modern machine learning benchmarks.
There’s a fair bit we know about the creation of the data due to its thorough
documentation.484

TIMIT features a total of about 5 hours of speech, composed of 6300 utterances,
specifically, 10 sentences spoken by each of 630 speakers. The sentences were
drawn from a corpus of 2342 sentences such as the following.

She had your dark suit in greasy wash water all year. (sa1)

Don’t ask me to carry an oily rag like that. (sa2)
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This was easy for us. (sx3)

Jane may earn more money by working hard. (sx4)

She is thinner than I am. (sx5)

Bright sunshine shimmers on the ocean. (sx6)

Nothing is as offensive as innocence. (sx7)

The TIMIT documentation distinguishes between 8 major dialect regions in the
United States, documented as New England, Northern, North Midland, South Midland,
Southern, New York City, Western, Army Brat (moved around). Of the speakers, 70%
are male and 30% are female. All native speakers of American English, the subjects
were primarily employees of Texas Instruments at the time. Many of them were
new to the Dallas area where they worked.

Racial information was supplied with the distribution of the data and coded
as “White”, “Black”, “American Indian”, “Spanish-American”, “Oriental”, and
“Unknown”. Of the 630 speakers, 578 were identified as White, 26 as Black, 2 as
American Indian, 2 as Spanish-American, 3 as Oriental, and 17 as unknown.

Table 9.1: Demographic information about the TIMIT speak-
ers

Male Female Total (%)

White 402 176 578 (91.7%)
Black 15 11 26 (4.1%)
American Indian 2 0 2 (0.3%)
Spanish-American 2 0 2 (0.3%)
Oriental 3 0 3 (0.5%)
Unknown 12 5 17 (2.6%)

The documentation notes:

In addition to these 630 speakers, a small number of speakers with
foreign accents or other extreme speech and/or hearing abnormalities
were recorded as “auxiliary” subjects, but they are not included on the
CD-ROM.

It comes to no surprise that early speech recognition models had significant
demographic and racial biases in their performance.

Today, several major companies, including Amazon, Apple, Google, and Mi-
crosoft, all use speech recognition models in a variety of products from cell phone
apps to voice assistants. There is no longer a major open benchmark that would
support training models competitive with the industrial counterparts. Indus-
trial speech recognition pipelines are generally complex and use proprietary data
sources that we don’t know a lot about. Nevertheless, today’s speech recognition
systems continue to exhibit performance disparities along racial lines.485
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UCI Machine Learning Repository

The UCI Machine Learning Repository currently hosts more than 500 datasets,
mostly for different classification and regression tasks. Most datasets are relatively
small, consisting of a few hundred or a few thousand instances. The majority are
structured tabular data sets with a handful or a few tens of attributes.

The UCI Machine Learning Repository contributed to the adoption of the
train-test paradigm in machine learning in the late 1980s. Pat Langley recalls:

The experimental movement was aided by another development. David
Aha, then a PhD student at UCI, began to collect data sets for use in
empirical studies of machine learning. This grew into the UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml/), which he made
available to the community by FTP in 1987. This was rapidly adopted
by many researchers because it was easy to use and because it let them
compare their results to previous findings on the same tasks.486

The most popular dataset in the repository is the Iris Data Set containing
taxonomic measurements of 150 iris flowers, 50 from each of 3 species. The task is
to classify the species given the measurements.

As of October 2020, the second most popular dataset in the UCI repository is the
Adult dataset. Extracted from the 1994 Census database, it features nearly 50,000

instances describing individuals in the United States, each having 14 attributes. The
task is to classify whether an individual earns more than 50,000 US dollars or less.
The Adult dataset remains popular in the algorithmic fairness community, largely
because it is one of the few publicly available datasets that features demographic
information including gender (coded in binary as male/female), as well as race
(coded as Amer-Indian-Eskimo, Asian-Pac-Islander, Black, Other, and White).

Unfortunately, the data has some idiosyncrasies that make it less than ideal for
understanding biases in machine learning models. Due to the age of the data, and
the income cutoff at $50,000, almost all instances labeled Black are below the cutoff,
as are almost all instances labeled female. Indeed, a standard logistic regression
model trained on the data achieves about 85% accuracy overall, while the same
model achieves 91% accuracy on Black instances, and nearly 93% accuracy on
female instances. Likewise, the ROC curves for the latter two groups enclose
actually more area than the ROC curve for male instances. This is an atypical
situation: more often, machine learning models perform worse on historically
disadvantaged groups.

MNIST

The MNIST dataset contains images of handwritten digits. Its most common
version has 60,000 training images and 10,000 test images, each having 28x28 black
and white pixels.

MNIST was created by researchers Burges, Cortes, and Lecun from an earlier
dataset released by the National Institute of Standards and Technology (NIST).
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Figure 9.1: A sample of MNIST digits

The dataset was introduced in a research paper in 1998 to showcase the use of
gradient-based deep learning methods for document recognition tasks.487 Since
then cited over 30,000 times, MNIST became a highly influential benchmark in the
computer vision community. Two decades later, researchers continue to use the
data actively.

The original NIST data had the property that training and test data came from
two different populations. The former featured the handwriting of two thousand
American Census Bureau employees, whereas the latter came from five hundred
American high school students.488 The creators of MNIST reshuffled these two
data sources and split them into training and test set. Moreover, they scaled and
centered the digits. The exact procedure to derive MNIST from NIST was lost, but
recently reconstructed by matching images from both data sources.489

The original MNIST test set was of the same size as the training set, but the
smaller test set became standard in research use. The 50,000 digits in the original
test set that didn’t make it into the smaller test set were later identified and dubbed
the lost digits.489

From the beginning, MNIST was intended to be a benchmark used to compare
the strengths of different methods. For several years, LeCun maintained an informal
leaderboard on a personal website that listed the best accuracy numbers that
different learning algorithms achieved on MNIST.
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Table 9.2: A snapshot of the original MNIST leaderboard
from February 2, 1999. Source: Internet Archive (Retrieved:
December 4, 2020)

Method Test error (%)

linear classifier (1-layer NN) 12.0
linear classifier (1-layer NN) [deskewing] 8.4
pairwise linear classifier 7.6
K-nearest-neighbors, Euclidean 5.0
K-nearest-neighbors, Euclidean, deskewed 2.4
40 PCA + quadratic classifier 3.3
1000 RBF + linear classifier 3.6
K-NN, Tangent Distance, 16x16 1.1
SVM deg 4 polynomial 1.1
Reduced Set SVM deg 5 polynomial 1.0
Virtual SVM deg 9 poly [distortions] 0.8
2-layer NN, 300 hidden units 4.7
2-layer NN, 300 HU, [distortions] 3.6
2-layer NN, 300 HU, [deskewing] 1.6
2-layer NN, 1000 hidden units 4.5
2-layer NN, 1000 HU, [distortions] 3.8
3-layer NN, 300+100 hidden units 3.05

3-layer NN, 300+100 HU [distortions] 2.5
3-layer NN, 500+150 hidden units 2.95

3-layer NN, 500+150 HU [distortions] 2.45

LeNet-1 [with 16x16 input] 1.7
LeNet-4 1.1
LeNet-4 with K-NN instead of last layer 1.1
LeNet-4 with local learning instead of ll 1.1
LeNet-5, [no distortions] 0.95

LeNet-5, [huge distortions] 0.85

LeNet-5, [distortions] 0.8
Boosted LeNet-4, [distortions] 0.7

In its capacity as a benchmark, it became a showcase for the emerging kernel
methods of the early 2000s that temporarily achieved top performance on MNIST.490

Today, it is not difficult to achieve less than 0.5% classification error with a wide
range of convolutional neural network architectures. The best models classify
all but a few pathological test instances correctly. As a result, MNIST is widely
considered too easy for today’s research tasks.

MNIST wasn’t the first dataset of handwritten digits in use for machine learning
research. Earlier, the US Postal Service (USPS) had released a dataset of 9298 images
(7291 for training, and 2007 for testing). The USPS data was actually a fair bit
harder to classify than MNIST. A non-negligible fraction of the USPS digits look

237



unrecognizable to humans,491 whereas humans recognize essentially all digits in
MNIST.

ImageNet

ImageNet is a large repository of labeled images that has been highly influential
in computer vision research over the last decade. The image labels correspond to
nouns from the WordNet lexical database of the English language.492 WordNet
groups nouns into cognitive synonyms, called synsets. The words car and automobile,
for example, would fall into the same synset. On top of these categories WordNet
provides a hierarchical tree structure according to a super-subordinate relationship
between synsets. The synset for chair, for example, is a child of the synset for
furniture in the wordnet hierarchy. WordNet existed before ImageNet and in part
inspired the creation of Imagenet.

The initial release of ImageNet included about 5000 image categories, each
corresponding to a synset in WordNet. These ImageNet categories averaged about
600 images per category.493 ImageNet grew over time and its Fall 2011 release had
reached about 32,000 categories.

The construction of ImageNet required two essential steps: retrieving candidate
images for each synset, and labeling the retrieved images. This first step utilized
online search engines and photo sharing platforms with a search interface, specifi-
cally, Flickr. Candidate images were taken from the image search results associated
with the synset nouns for each category.

For the second labeling step, the creators of ImageNet turned to Amazon’s
Mechanical Turk platform (MTurk). MTurk is an online labor market that allows
individuals and corporations to hire on-demand workers to perform simple tasks.
In this case, MTurk workers were presented with candidate images and had to
decide whether or not the candidate image was indeed an image corresponding to
the category that it was putatively associated with.

It is important to distinguish between this ImageNet database and a popular
machine learning benchmark and competition, called ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), that was derived from it.494 The competition
was organized yearly from 2010 until 2017, reaching significant notoriety in both
industry and academia, especially as a benchmark for emerging deep learning
models.

When machine learning practitioners say “ImageNet” they typically refer to
the data used for the image classification task in the 2012 ILSVRC benchmark. The
competition included other tasks, such as object recognition, but image classification
has become the most popular task for the dataset. Expressions such as “a model
trained on ImageNet” typically refer to training an image classification model on
the benchmark data set from 2012.

Another common practice involving the ILSVRC data is pre-training. Often a
practitioner has a specific classification problem in mind whose label set differs
from the 1000 classes present in the data. It’s possible nonetheless to use the data
to create useful features that can then be used in the target classification problem.
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Where ILSVRC enters real-world applications it’s often to support pre-training.
This colloquial use of the word ImageNet can lead to some confusion, not least

because the ILSVRC-2012 dataset differs significantly from the broader database. It
only includes a subset of 1000 categories. Moreover, these categories are a rather
skewed subset of the broader ImageNet hierarchy. For example, of these 1000

categories only three are in the person branch of the WordNet hierarchy, specifically,
groom, baseball player, and scuba diver. Yet, more than 100 of the 1000 categories
correspond to different dog breeds. The number is 118, to be exact, not counting
wolves, foxes, and wild dogs that are also present among the 1000 categories.

What motivated the exact choice of these 1000 categories is not entirely clear.
The apparent canine inclination, however, isn’t just a quirk either. At the time,
there was an interest in the computer vision community in making progress on
prediction with many classes, some of which are very similar. This reflects a
broader pattern in the machine learning community. The creation of datasets is
often driven by an intuitive sense of what the technical challenges are for the field.
In the case of ImageNet, another important consideration was scale, both in terms
of the number of images and the number of classes.

The large scale annotation and labeling that went into Imagenet falls into a
category of labor that Gray and Suri call ghost work in their book of the same
name.495 They point out:

MTurk workers are the AI revolution’s unsung heroes.

Indeed, ImageNet was labeled by about 49,000 MTurk workers from 167 coun-
tries over the course of multiple years.

The Netflix Prize

The Netflix Prize was one of the most famous machine learning competitions.
Starting on October 2, 2006, the competition ran for nearly three years ending
with a grand prize of $1M, announced on September 18, 2009. Over the years, the
competition saw 44,014 submissions from 5169 teams.

The Netflix training data contained roughly 100 million movie ratings from
nearly 500 thousand Netflix subscribers on a set of 17770 movies. Each data point
corresponds to a tuple <user, movie, date of rating, rating>. At about 650

megabytes in size, the dataset was just small enough to fit on a CD-ROM, but large
enough to be pose a challenge at the time.

The Netflix data can be thought of as a matrix with n = 480189 rows and
m = 17770 columns. Each row corresponds to a Netflix subscriber and each
column to a movie. The only entries present in the matrix are those for which a
given subscriber rated a given movie with rating in {1, 2, 3, 4, 5}. All other entries—
that is, the vast majority—are missing. The objective of the participants was to
predict the missing entries of the matrix, a problem known as matrix completion,
or collaborative filtering somewhat more broadly. In fact, the Netflix challenge did
so much to popularize this problem that it is sometimes called the Netflix problem.
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The idea is that if we could predict missing entries, we’d be able to recommend
unseen movies to users accordingly.

The hold out data that Netflix kept secret consisted of about three million
ratings. Half of them were used to compute a running leaderboard throughout the
competition. The other half determined the final winner.

The Netflix competition was hugely influential. Not only did it attract signifi-
cant participation, it also fueled much academic interest in collaborative filtering
for years to come. Moreover, it popularized the competition format as an appealing
way for companies to engage with the machine learning community. A startup
called Kaggle, founded in April 2010, organized hundreds of machine learning
competitions for various companies and organizations before its acquisition by
Google in 2017.

But the Netflix competition became infamous for another reason. Although Net-
flix had replaced usernames by pseudonymous numbers, researchers Narayanan
and Shmatikov were able to re-identify some of the Netflix subscribers whose
movie ratings were in the dataset496 by linking those ratings with publicly available
movie ratings on IMDB, an online movie database. Some Netflix subscribers had
also publicly rated an overlapping set of movies on IMDB under their real identities.
In the privacy literature, this is called a linkage attack and it’s one of the ways that
seemingly anonymized data can be de-anonymized.497

What followed were multiple class action lawsuits against Netflix, as well as an
inquiry by the Federal Trade Commission over privacy concerns. As a consequence,
Netflix canceled plans for a second competition, which it had announced on August
6, 2009.

To this day, privacy concerns are a legitimate obstacle to public data release
and dataset creation. Deanonymization techniques are mature and efficient. There
provably is no algorithm that could take a dataset and provide a rigorous privacy
guarantee to all participants, while being useful for all analyses and machine
learning purposes. Dwork and Roth call this the Fundamental Law of Information
Recovery: “overly accurate answers to too many questions will destroy privacy in a
spectacular way.”498

Roles datasets play

In machine learning research and engineering, datasets play a different and more
prominent set of roles than they do in most other fields. We have mentioned several
of these above but let us now examine them in more detail. Understanding these
is critical to figuring out which technical and cultural aspects of benchmarks are
essential, how harms arise, and how to mitigate them.

A source of real data

Edgar Anderson was a botanist and horticulturist who spent much of the 1920s
and ’30s collecting and analyzing data on Irises to study biological and taxonomic
questions. The Iris dataset in the UCI machine learning repository mentioned
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above is the result of Anderson’s labors — or a tiny sliver of them, as most of
the observations in the dataset came from a single day of field work. The dataset
contains 50 observations each of 3 iris plants; the task is to distinguish the species
based on 4 physical attributes (sepal length and width; petal length and width).
Most of the tens of thousands of researchers who have used this dataset are not
interested in taxonomy, let alone irises. What, then, are they using the dataset for?

Although the data was collected by Anderson, it was actually published in
the paper “The use of multiple measurements in taxonomic problems” by Ronald
Fisher, who was a founder of modern statistics as well as a eugenicist.499 The
eugenics connection is not accidental: other central figures in the development
of modern statistics such as Francis Galton and Karl Pearson were algo eugeni-
cists.500, 501 Fisher was Anderson’s collaborator. Although Fisher had some interest
in taxonomy, he was primarily interested in using the data to develop statistical
techniques (with an eye toward applications for eugenics). In the 1936 paper, Fisher
introduces Linear Discriminant Analysis (LDA) and shows that it performs well on
this task.

The reason the Iris dataset proved to be a good application of LDA is that
there exists a linear projection of the four features which seems to result in a
mixture of Gaussians (one for each of the three species), and the means of the three
distributions are relatively far apart; one of the species is in fact perfectly separable
from the other two. Every learning algorithm implicitly makes assumptions about
the data-generating process: without assumptions, there is no basis for making
predictions on unseen points.502 If we could perfectly mathematically describe
the data generating process behind the physical characteristics of irises (or any
other population), we wouldn’t need a dataset — we could mathematically work
out how well an algorithm would perform. In practice, for complex phenomena,
such perfect mathematical descriptions rarely exist. Different communities place
different value on attempting to discover the true data generating process. Machine
learning places relatively little emphasis on this goal.503 Ultimately, the usefulness
of a learning algorithm is established by testing it on real datasets.

The reliance on benchmark datasets as a source of real data was a gradual
development in machine learning research. For example, Rosenblatt’s perceptron
experiments in the 1950s used two artificial stimuli (the characters E and X), with
numerous variants of each created by rotation and other transformations.504 The
controlled input was considered useful to understand the behavior of the system.
Writing in 1988, Pat Langley advocates for a hybrid approach, pointing out that
“successful runs on a number of different natural domains provide evidence of gen-
erality” but also highlighting the use of artificial data for better understanding.505

Especially after the establishment of the UCI repository around this time, it has
become common to evaluate new algorithms on widely-used benchmark datasets
as a way of establishing that the researcher is not “cheating” by picking contrived
inputs.

To summarize, when a researcher seeks to present evidence that an algorithmic
innovation is useful, the use of real dataset as opposed to artificial data ensures
that the researcher didn’t make up data to suit the algorithm. Further, the use of
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prominent benchmark datasets wards off skepticism that the researcher may have
cherry picked a dataset with specific properties that makes the algorithm effective.
Finally, the use of multiple benchmark datasets from different domains suggests
that the algorithm is highly general.

Perversely, domain ignorance is treated almost as a virtue rather than a draw-
back. For example, researchers who achieve state-of-the-art performance on (say)
Chinese-to-English translation may point out that none of them speak Chinese.
The subtext is that they couldn’t have knowingly or unknowingly picked a model
that works well only when the source language is linguistically similar to Chinese.

A catalyst and measure of domain-specific progress

Algorithmic innovations that are highly portable across domains, while important,
are rare. Much of the progress in machine learning is instead tailored to specific
domains and problems. The most common way to demonstrate such progress is
to show that the innovation in question can be used to achieve “state of the art”
performance on a benchmark dataset for that task.

The idea that datasets spur algorithmic innovation bears some explanation. For
example, the Netflix Prize is commonly credited as responsible for the discovery of
the effectiveness of matrix factorization in recommender systems (often attributed
to Simon Funk, a pseudonymous contestant506). Yet, the technique had been
proposed in the context of movie recommendation as early as 1998

507 and for search
as early as 1990.508 However, it was not previously apparent that it outperformed
neighborhood-based methods and that it could discover meaningful latent factors.
The clarity of the Netflix leaderboard and the credibility of the dataset helped
establish the significance of matrix factorization.509

Somewhat separately from the role of spurring algorithmic innovation, bench-
mark datasets also offer a convenient way to measure its results (hence the term
benchmark). The progression of state-of-the-art accuracy on a benchmark dataset
and task can be a useful indicator. A relatively flat curve of accuracy over time
may indicate that progress has stalled, while a discontinuous jump may indicate a
breakthrough. Reaching an error rate that is close to zero or at least lower than
the “human error” for perception tasks is often considered a sign that the task is
“solved” and that it is time for the community to move on to a harder challenge.

While these are appealing heuristics, there are also pitfalls. In particular, a
statement such as “the state of the art accuracy for image classification is 95%” is
not a scientifically meaningful claim that can be assigned a truth value, because
the number is highly sensitive to the data distribution.

A notable illustration of this phenomenon comes from a paper by Recht, Roelofs,
Schmidt, and Shankar. They carefully recreated new test sets for the CIFAR-10

and ImageNet classification benchmarks according to the very same procedure as
the original test sets.510 They then took a large collection of representative models
proposed over the years and evaluated all of them on the new test sets. All models
suffered a significant drop in performance on the new test set, corresponding to
about 5 years of progress in image classification. They found that this is because
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Figure 9.2: Model accuracy on the original test sets vs. new test sets for CIFAR-
10 and ImageNet. Each data point corresponds to one model in a test bed of
representative models (shown with 95% Clopper-Pearson confidence intervals).
The plots reveal two main phenomena: (i) There is generally a significant drop in
accuracy from the original to the new test sets. (ii) The model accuracies closely
follow a linear function, meaning that models that perform well on the old test set
also tend to perform well on the new test set. The narrow shaded region is a 95%
confidence region for the linear fit.

the new test set represents a slightly different distribution. This is despite the
researchers’ careful efforts to replicate the data collection procedure; we should
expect that test sets created by different procedures should result in much greater
performance differences.

The same graphs also provide a striking illustration of why benchmark datasets
are a practical necessity for performance comparison in machine learning. Consider
a hypothetical alternative approach analogous to the norm in many other branches
of science: a researcher evaluating a claim (algorithm) describes in detail their
procedure for sampling the data; other researchers working on the same problem
sample their own datasets based on the published procedure. Some reuse of
datasets occurs, but there is no standardization. The graphs show that even
extremely careful efforts to sample a new dataset from the same distribution would
shift the distribution sufficiently to make performance comparison hopeless.

In other words, reported accuracy figures from benchmark datasets do not
constitute generalizable scientific knowledge, because they don’t have external
validity beyond the specific dataset. While the Recht et al. paper is limited to
image classification, it seems scientifically prudent to assume a lack of external
validity for other machine learning tasks as well, unless there is evidence to the
contrary. Yet the two graphs above hint at a different type of knowledge that
seems to transfer almost perfectly to the new test set: the relative performance of
models. Indeed, another paper showed evidence that relative performance is stable
on many datasets across a much wider range of distribution shifts, with strong
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correlations between in-domain and out-of-domain performance.511

The relative performance of models for a given task is a very useful type of
practitioner-oriented knowledge that can be gained from benchmark leaderboards.
A question that practitioners often face is, “which class of models should I use for
[given task] and how should I optimize it”? A benchmark dataset (together with
the associated task definition) can be seen as a proxy for answering this question in
a constrained setting, analogous to laboratory studies in other branches of science.
The hope is that algorithms (and model classes or architectures) identified as state
of the art based on benchmark evaluation are also the ones that will be effective on
the practitioner’s test set. In other words, practitioners can outsource the laborious
task of model selection to the benchmark leaderboard.

To be clear, this is an oversimplification. Practitioners have many concerns
in addition to accuracy such as the computational cost (of both training and
prediction), interpretability, and, increasingly, fairness and environmental cost.
Thus, benchmark performance is useful to practitioners but far from the only
consideration for model selection.

We can imagine a spectrum of how similar the new test set is to the benchmark
set. At the one extreme, if the new test set is truly a new sample from the exact
same distribution, then the ranking of model classes should be the same for the
two sets. At the other extreme, the distributions may be so different that they
constitute essentially different tasks, so that performance on one is not a useful
guide to performance on the other. In between these extremes is a big grey area
that is not well understood, and it is currently more art than science.

The lack of clarity on how much we can generalize from one or a few bench-
marks is associated with well known controversies. For example, support vector
machines were competitive with neural networks on earlier-generation benchmarks
such as NIST digit recognition,512 which was one reason why interest in neural
networks dwindled in the 1990s. The clear superiority of neural networks on newer
benchmarks such as ImageNet was only belatedly recognized.1

A source of (pre-)training data

Above, we have envisioned that practitioners use the benchmark leaderboard as a
guide to model selection but then train the selected models from scratch on their
own (often proprietary) data sources. But practitioners often can and do go further.

In some cases, it may be possible to train on a benchmark dataset and directly
use the resulting model in one’s application. This depends on the domain and
the task, and is more suitable when the distribution shift is minimal and the set
of class labels is stable. For example, it is reasonable to deploy a digit recognizer
pretrained on MNIST, but not so much an image classifier pretrained on ILSVRC
(without some type of adaptation to the target domain). Indeed, ILSVRC consists
of a rather arbitrary subset of 1,000 classes of ImageNet, and a pretrained model
is correspondingly limited in the set of labels it is able to output. The ImageNet

1The difficulty of ascertaining the extent to which a study’s findings generalize beyond the studied
population bedevils all of the statistical sciences. See, for instance.513
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Roulette project was a telling demonstration of what happens when a model
trained on the (full) ImageNet dataset is applied to a different test distribution,
one consisting primarily of images of people. The results were grotesque. The
demonstration has been discontinued, but many archived results may be found in
articles about the project.514 Finally, consider a recommendation system benchmark
dataset. There is no way to even attempt to use it directly as training data because
the users about whom one wants to make predictions are highly unlikely to be
present in the training set.

In most cases, the creators of benchmark datasets do not intend them to be used
as a source of training data, although benchmark datasets are often misused for
this purpose. A rare exception is The Pile: a large (800 GB) English text corpus that
is explicitly targeted at training language models. To improve the generalization
capabilities of models trained on this corpus, the authors included diverse text
from 22 different sources.515

Even when benchmark datasets are not useful as training data for the above-
mentioned reasons, they can be useful as pre-training data for transfer learning.
Transfer learning refers to using an existing model as a starting point for building a
new model. A new model may be needed because the data distribution has shifted
compared to what the existing model was optimized for, or because it aims to
solve a different task altogether. For example, a model pre-trained on ImageNet
(or ILSVRC) may be adapted via further training for recognizing different species
(distribution shift) or as part of an image captioning model (a different task).

There are different intuitions to explain why transfer learning is often effective.
One is that the final layers of a neural network correspond to semantically high-level
representations of the input. Pre-training is a way of learning these representations
that tend to be useful for many tasks. Another intuition is that pre-training is a
way of initializing weights that offers an improvement over random initialization
in that it requires fewer samples from the target domain for convergence.

Pretraining offers the practical benefit of being able to share the knowledge
contained in a dataset without releasing the raw data. Many datasets, especially
those created by companies using customer data, cannot be published due to
privacy or confidentiality concerns. The release of pretrained models is thus an
important avenue of knowledge sharing from industry to academia. Sharing
pretrained models is also helpful to users for whom training from scratch is cost
prohibitive. However, privacy and data protection concerns surface in the context
of sharing pretrained models due to the possibility that personal data used for
training can be recontructed from the pretrained model.516

Let’s wrap up our analysis of the roles of benchmark datasets. We identified six
distinct roles: (1) providing data sampled from real-world occurring distributions
that enables largely domain-agnostic investigations of learning algorithms; (2)
enabling domain-specific progress by providing datasets that are representative of
real-world tasks in that domain yet abstract away unnecessary detail; (3) providing
a convenient albeit crude numerical way to track scientific progress on a problem;
(4) enabling model comparison and allowing practitioners to outsource model
selection to public leaderboards; (5) providing a source of pre-training data for
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representation learning, weight initialization, etc; (6) providing a source of training
data. The progression of these six roles is generally toward increasing domain- and
task-specificity, and from science-oriented to practice-oriented.

The scientific basis of machine learning benchmarks

Now we examine a seeming mystery: whether and why the benchmark approach
works despite the practice of repeated testing on the same data.

Methodologically, much of modern machine learning practice rests on a variant
of trial and error, which we call the train-test paradigm. Practitioners repeatedly
build models using any number of heuristics and test their performance to see what
works. Anything goes as far as training is concerned, subject only to computational
constraints, so long as the performance looks good in testing. Trial and error is
sound so long as the testing protocol is robust enough to absorb the pressure
placed on it. We will examine to what extent this is the case in machine learning.

From a theoretical perspective, the best way to test the performance of a
classifier is to collect a sufficiently large fresh dataset and to compute the average
error on that test set. Data collection, however, is a difficult and costly task. In most
applications, practitioners cannot sample fresh data for each model they would
like to try out. A different practice has therefore become the de-facto standard.
Practitioners split their dataset into typically two parts, a training set used for
training a model, and a test set used for evaluating its performance.2 Often the
split is determined when the dataset is created. Datasets used for benchmarks in
particular have one fixed split persistent throughout time. A number of variations
on this theme go under the name holdout method.

Machine learning competitions have adopted the same format. The company
Kaggle, for example, has organized hundreds of competitions since it was founded.
In a competition, a holdout set is kept secret and is used to rank participants on
a public leaderboard as the competition unfolds. In the end, the final winner is
whoever scores highest on a separate secret test set not used to that point.

In all applications of the holdout method the hope is that the test set will serve
as a fresh sample that provides good performance estimates for all the models. The
central problem is that practitioners don’t just use the test data once only to retire
it immediately thereafter. The test data are used incrementally for building one
model at a time while incorporating feedback received previously from the test
data. This leads to the fear that eventually models begin to overfit to the test data.
This type of overfitting is sometimes called adaptive overfitting or human-in-the-loop
overfitting.

Duda, Hart, and Stork summarize the problem aptly in their 1973 textbook:517

In the early work on pattern recognition, when experiments were often
done with very small numbers of samples, the same data were often
used for designing and testing the classifier. This mistake is frequently

2Sometimes practitioners divide their data into multiple splits, e.g., training, validation, and test
sets. However, for our discussion here that won’t be necessary.
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referred to as “testing on the training data.” A related but less obvious
problem arises when a classifier undergoes a long series of refinements
guided by the results of repeated testing on the same data. This form
of “training on the testing data” often escapes attention until new test
samples are obtained.

Nearly half a century later, Hastie, Tibshirani, and Friedman still caution in the
2017 edition of their influential textbook:518

Ideally, the test set should be kept in a “vault,” and be brought out only
at the end of the data analysis. Suppose instead that we use the test-set
repeatedly, choosing the model with smallest test-set error. Then the
test set error of the final chosen model will underestimate the true test
error, sometimes substantially.

While the suggestion to keep the test data in a “vault” is safe, it couldn’t be
further from the reality of modern practice. Popular test datasets often see tens of
thousands of evaluations.

Yet adaptive overfitting doesn’t seem to be happening. Recall the scatter plots
by Recht et al. above: the plots admit a clean linear fit with positive slope. In other
words, the better a model is on the old test set, the better it is on the new test set.
But notice that newer models, i.e., those with higher performance on the original
test set, had more time to adapt to the test set and to incorporate more information
about it. Nonetheless, the better a model performed on the old test set the better
it performs on the new set. Moreover, on CIFAR-10 we even see clearly that the
absolute performance drops diminishes with increasing accuracy on the old test
set. In particular, if our goal was to do well on the new test set, seemingly our best
strategy is to continue to inch forward on the old test set.

The theoretical understanding of why machine learning practice has not re-
sulted in overfitting is still catching up. Here, we highlight one of many potential
explanations, called the leaderboard principle. It is a subtle effect in which publica-
tion biases force researchers to chase state-of-the-art results, and they only publish
models if they see significant improvements over prior models. This cultural prac-
tice can be formalized by Blum & Hardt’s Ladder algorithm. For each given classifier,
it compares the classifier’s holdout error to the previously smallest holdout error
achieved by any classifier encountered so far. If the error is below the previous best
by some margin, it announces the holdout error of the current classifier and notes
it as the best seen so far. Importantly, if the error is not smaller by a margin, the
algorithm releases the previous best (rather than the new error). It can be proven
that the Ladder algorithm avoids overfitting in the sense that it accurately measures
the error of the best performing classifier among those encountered.519

Benchmark praxis and culture

The above discussion hints at the importance of cultural practices for a full un-
derstanding of benchmark datasets. Let us now discuss these in more detail,
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highlighting both dataset creators and users. These practices have helped make
the benchmark-oriented approach successful but also impact the harms associated
with data. Let’s start with creators.

Benchmark creators define the task. This involves, among other things, selecting
the high-level problem, defining the target variable, the procedure for sampling
the data, and the scoring function. If manual annotation of the data is necessary,
the dataset creator must develop a codebook or rubric for doing so and orchestrate
crowd-work if needed. Data cleaning to ensure high-quality labels is usually
required.

In defining the task, benchmark developers navigate a tricky balance: a task
that is seen as too easy using existing techniques will not spur innovation while a
task that is seen as too hard may be demotivating. Finding the sweet spot requires
expertise, judgment, and some luck. If the right balance is achieved, the benchmark
drives progress on the problem. In this way, benchmark creators play an outsized
role in defining the vision and agenda for machine learning communities. The
selection of tasks in benchmarks is known to affect the ranking of models, which
influences and biases the direction of progress in the community.520 This effect
may be getting more pronounced over time due to increasing concentration on
fewer datasets.521

As an example of the kinds of decisions benchmark developers must make, and
how they influence the direction of research, consider MNIST. As discussed above,
it was derived from a previous dataset released by NIST in which the training and
test set were drawn from different sources, but MNIST eliminated this distribution
shift. The MNIST creators argued that this was necessary because

Drawing sensible conclusions from learning experiments requires that
the result be independent of the choice of training set and test among
the complete set of samples.

In other words, if an algorithm performs well on NIST it is unclear how much
of this due to its ability to learn the training distribution and how much of it is
due to its ability to ignore the differences between the train and test distributions.
MNIST allows researchers to focus selectively on the former question. This was a
fruitful approach in 1995. Decades later, when problems like MNIST classification
are effectively solved, the attention of benchmark dataset creators has turned
towards methods for handling distribution shift that LeCun et al. justifiably chose
to ignore.522

Another tricky balance is between abstracting away domain details so that
the task is approachable for a broad swath of machine learning experts, and
preserving enough details so that the methods that work in the benchmark setting
will translate to production settings. One reason the Netflix Prize was so popular is
because the data is just a matrix, and it is possible to achieve good performance (in
the sense of beating Netflix’s baseline) without really thinking about what the data
means. No understanding of film or user psychology was necessary — or helpful,
as it turned out. It is possible that domain expertise would have proved essential if
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the problem had been formulated differently — say, to require explainability or
emphasize good performance even for users with very few previous ratings.

Another challenge for dataset creators is to avoid leakage. In an apocryphal
story from the early days of computer vision, a classifier was trained to discriminate
between images of Russian and American tanks with seemingly high accuracy, but
it turned out that this was only because the Russian tanks had been photographed
on a cloudy day and the American ones on a sunny day.523 Data leakage refers to
a spurious relationship between the feature vector and the target variable that is an
artifact of the data collection or sampling strategy. Since the spurious relationship
won’t be present when the model is deployed, leakage usually leads to inflated
estimates of model performance. Kaufman et al. present an overview of leakage in
machine learning.524

Yet another critical responsibility of benchmark dataset creators is to implement
a train-test framework. Most contests have various restrictions in place in an
attempt to prevent both accidental overfitting to the leaderboard test set and
intentional reverse engineering. Although, as we described above, benchmark
praxis differs from the textbook version of the holdout method, practitioners have
arrived at a set of techniques that have worked in practice, even if our theoretical
understanding of why they work is still catching up.

Taking a step back, in any scientific endeavor there are the difficult tasks of
framing the problem, ensuring that the methods have internal and external validity,
and interpreting the results. Benchmark dataset creators handle as many of these
hard tasks as possible, simplifying the goal of dataset users to the point where if a
researcher beats the state-of-the-art performance, there is a good chance that there
is a scientific insight somewhere in the methods, although extracting what this
insight is may still require work. Further simplifying things for dataset users is the
fact that there are no restrictions other than computational constraints on how the
researcher uses the training data, as long as performance on the test set looks good.

To be clear, this approach has many pitfalls. Researchers rarely perform the
statistical hypothesis tests needed to have confidence in the claim that one model
performs better than another.525 Our understanding of how to account for the
numerous sources of variance in these performance measurements is still evolving;
a 2021 paper that aims to do so argues that many of the claims of State-of-the-Art
performance in natural language performance and computer vision don’t hold up
when subjected to such tests.526

There have long been articles noting the limitations of what researchers and
practitioners can learn from benchmark performance evaluation.527, 528 David Aha,
co-creator of the UCI repository, recalls that these limitations were well understood
as early as 1995, just a few years after the repository was established.529

While it is important to acknowledge the limitations, it is also worth highlight-
ing that this approach works at all. One reason for this success is that the scientific
questions are primarily about algorithms and not the populations that the datasets
are sampled from.

Indeed, there is a case to be made that other scientific communities should
adopt the machine learning community’s approach, sometimes called the Common
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Task Method.481 Diverse scientific fields including economics, political science,
psychology, genetics, and many others have seen an infusion of machine learning
methods alongside a new focus on maximizing predictive accuracy as a research
objective. These shifts have been accompanied by a rash of reproducibility failures,
with large fractions of published papers falling prey to pitfalls such as data leak-
age.530 Use of the benchmark dataset approach could have avoided most of these
pitfalls.

Now let us transition to dataset users. Benchmark users have embraced the
freedom afforded by the approach. As a result, the community of users is large —
for example, the data science platform Kaggle has over 5 million registered users
of whom over 130,000 have participated in a competition. There is less gatekeeping
in machine learning research than in other disciplines. Many prominent findings
bypass peer review. If a technique performs well on the leaderboard, that is
considered to speak for itself. Many people who contribute these findings are not
formally affiliated with research institutions.

Overall, the culture of progress in machine learning combines the culture
of academic scholarship, engineering, and even gaming, with a community of
hobbyists and practitioners sharing tips and tricks on forums and engaging in
friendly competition. This freewheeling culture may seem jarring to some observers,
especially given the sensitivity of some of the datasets involved. The lack of
gatekeeping means fewer opportunities for ethical training.

There is another aspect of benchmark culture that amplifies the harms associated
with data: collecting data without informed consent and distributing it widely
without adequate context. Many modern datasets, especially in computer vision
and natural language processing, are scraped from the web. In such cases, it is
infeasible to obtain informed consent from the individual authors of the content.
What about a dataset such as the Netflix Prize where a company releases data from
its own platform? Even if companies disclose in their terms of service that data
might be used for research, it is doubtful that informed consent has been obtained
since few users read and understand Terms of Service documents and because of
the complexity of the issues involved.

When an individual’s data becomes part of a benchmark dataset, it gets dis-
tributed widely. Popular benchmark datasets are downloaded by thousands of
researchers, students, developers, and hobbyists. Scientific norms also call for the
data to be preserved indefinitely in the interest of transparency and reproducibility.
Thus, not only might individual pieces of data in these datasets be distributed and
viewed widely, they are viewed in a form that strips them of their original context.
A joke in bad taste written on social media and later deleted may be captured
alongside documents from the library of congress.

Harms associated with data

Now we will discuss a few important types of harms associated with benchmark
datasets and how to mitigate them. We don’t mean to imply that all of these harms
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are the “fault” of dataset creators, but understanding how data plays into these
harms will bring clarity on how to intervene.

Downstream and representational harms

A dataset’s downstream harms are those that arise from the models trained on
it. This is a type of harm that readily comes to mind: bad data may lead to bad
models which can cause harm to the people they purportedly serve. For instance,
biased criminal risk prediction systems disproportionately harm Black, minority,
and overpoliced populations among others.

Properties of datasets that sometimes (but not always, and not in easily pre-
dictable ways) propagate downstream include imbalance, biases, stereotypes, and
categorization. By imbalance we mean unequal representation of different groups.
For example, Buolamwini and Gebru pointed out that two facial analysis bench-
marks, IJB-A and Adience, overwhelmingly featured lighter-skinned subjects.339

By dataset biases we mean incorrect associations, especially those corresponding
to social and historical prejudices. For example, a dataset that measures arrests as
a proxy for crime may reflect the biases of policing and discriminatory laws. By
stereotypes we mean associations that accurately reflect a property of the world
(or a specific culture at a specific point in time) that is thought to be the result of
social and historical prejudice. For example, gender-occupation associations can
be called stereotypes. By categorization we mean assigning discrete (often binary)
labels to complex aspects of identity such as gender and race.

Representational harms occur when systems reinforce the subordination of
some groups along the lines of identity. Representational harms could be down-
stream harms — such as when models apply offensive labels to people from
some groups — but they could be inherent in the dataset. For example, Ima-
geNet contains numerous slurs and offensive labels inherited from WordNet and
pornographic images of people who did not consent to their inclusion in the
dataset.531, 532

While downstream and representational harms are two categories that have
drawn a lot of attention and criticism, there are many other harms that often
arise including the environmental cost of training models on unnecessarily large
datasets533 and the erasure of the labor of subjects who contributed the data529 or
the annotators who labeled it.495 For an overview of ethical concerns associated
with datasets, see the survey by Paullada et al.534

Mitigating harms: an overview

Approaches for mitigating the harms associated with data are quickly developing.
Here we review a few selected ideas.

One approach targets the fact that many machine learning datasets are poorly
documented, and details about their creation are often missing. This leads to
a range of issues from lack of reproducibility and concerns of scientific validity
to misuse and ethical concerns. In response, datasheets for datasets is a template
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and initiative by Gebru et al. to promote more detailed and systematic annotation
for datasets.535 A datasheet requires the creator of a dataset to answer questions
relating to several areas of interest: Motivation, composition, collection process,
preprocessing/cleaning/labeling, uses, distribution, maintenance. One goal is
that process of creating a datasheet will help anticipate ethical issues with the
dataset. But datasheets also aim to make data practices more reproducible, and
help practitioners select more adequate data sources.

Going a step beyond datasheets, Jo and Gebru536 draw lessons from archival
and library sciences for the construction and documentation of machine learning
datasets. These lessons draw attention to issues of consent, inclusivity, power,
transparency, ethics and privacy.

Other approaches stay within the paradigm of minimally curated data collec-
tion but aim to modify or sanitize content deemed problematic in datasets. The
ImageNet creators have made efforts to remove slurs and harmful terms as well as
categories considered non-imageable, or unable to be characterized using images.
“Vegetarian” and “philanthropist” are two such categories that were removed.532

The REVISE tool aims to partially automate the process of identifying various
kinds of biases in visual datasets.537

Mitigating harms by separating the roles of datasets

Our analysis of the different roles datasets play allows greater clarity in mitigating
harms while preserving benefits. This analysis is not intended as an alternative to
the many approaches that have already been proposed for mitigating harms. Rather,
it can sharpen our thinking and strengthen other harm-mitigation strategies.

Our main observation is that the reuse of scientific benchmark datasets in
engineering pipelines complicates efforts to address biases and harms. Attempts to
address harms in such dual-use datasets leaves creators with a conundrum. On the
one hand, benchmark datasets need to be long-lived: many benchmark datasets
created decades ago continue to be useful and widely used today. Thus, modifying
a dataset down the line when new harms become known will compromise its
scientific utility, as performance on the modified dataset may not be meaningfully
comparable to performance on the older dataset.

On the other hand, attempting to anticipate all possible harms during dataset
creation is infeasible if the dataset is going to be used as training or pre-training
data. Experience shows that datasets turn out to be useful for an ever-expanding
set of downstream tasks, some of which were not even conceived of at the time of
dataset creation.

Better tradeoffs are possible if there is a clear separation between scientific
benchmarks and production-oriented datasets. In cases where the same dataset
can be potentially useful for both purposes, creators should consider making two
versions or forks of the data, because many of the harm mitigation strategies that
apply to one don’t apply to the other, and vice versa.

To enforce this separation, benchmark dataset creators should consider avoiding
the use of the dataset in production pipelines by explicitly prohibiting it in the terms
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of use. Currently the licenses of many benchmark datasets prohibit commercial
uses. This restriction has a similar effect, but it is not the best way to make this
distinction. After all, production models may be noncommercial: they may be built
by researchers or governments, with the latter category having an especially high
potential for harm. At the same time, prohibiting commercial uses is arguably too
strict, as it prohibits the use of the dataset as a guide to model selection, a use that
does not raise the same risks of downstream harm.

One reason why there are fairness interventions applicable to scientific bench-
mark datasets but not production datasets is that, as we’ve argued, most of the
scientific utility of benchmarks is captured by the relative performance of models.
The fact that interventions that hurt absolute performance may be acceptable gives
greater leeway for harm mitigation efforts. Consider image classification bench-
marks. We hypothesize that the relative ranking of models will be only minimally
affected if the dataset is modified to remove all images containing people (keeping
high-level properties including the number of classes and images the same). Such
an intervention would avoid a wide swath of the harms associated with datasets
while preserving much of its scientific utility.

Conversely, one reason why there are fairness interventions applicable to pro-
duction datasets but not scientific benchmarks is that interventions for production
datasets can be strongly guided by an understanding of their downstream impacts
in specific applications. Language and images, in particular, capture such a variety
of cultural stereotypes that sanitizing all of them has proved infeasible.538 It is
much easier to design interventions once we fix an application and the cultural
context(s) in which it will be deployed. Different interventions may be applicable
to the same dataset used in different applications. Unlike scientific benchmarks,
dataset standardization is not necessary in engineering settings.

In fact, the best locus of intervention even for dataset biases may be downstream
of the data. For example, it has been observed for many years that online translation
systems perpetuate gender stereotypes when translating gender-neutral pronouns.
The text “O bir doctor. O bir hemşire.” may be translated from Turkish to English
as “He is a doctor. She is a nurse.” Google Translate mitigated this by showing
multiple translations in such cases.539, 540 Compared to data interventions, this has
the benefit of making the potential bias (or, in some cases, erroneous translation)
more visible to the user.

Our analysis points to many areas where further research could help clarify
ethical implications. In particular, the pre-training role of benchmark datasets
occupies a grey area where it is not clear when and to what extent data biases
propagate to the target task/domain. Research on this area is nascent;541 this
research is vital because the (mis)use of scientific benchmarks for pre-training in
production pipelines is common today and unlikely to cease in the near future.

Datasets should not be seen as static, neutral technical artifacts. The harms
that could arise from a dataset depend not just on its contents but also the rules,
norms, and culture surrounding its usage. Thus, modifying these cultural practices
is one potential way to mitigate harms. As we discussed above, lack of domain
knowledge by dataset users has come to be seen almost as a virtue in machine
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learning. This attitude should be reconsidered as it has a tendency to accentuate
ethical blind spots.

Datasets require stewardship, whether by the dataset creator or by another
designated entity or set of entities. Consider the problem of derivatives: popular
benchmark datasets are often extended by other researchers with additional fea-
tures, and these derived datasets can introduce the possibility of harms not present
in the original (to the same extent). For example, the Labeled Faces in the Wild
(LFW) dataset of faces was annotated by other researchers with characteristics as
race, gender, and attractiveness.542, 543 Regardless of the ethics of LFW itself, the
derived dataset enables new applications that classify people by appearance in
harmful ways.3 Of course, not all derivatives are ethically problematic. Adjudicat-
ing and enforcing such ethical distinctions is only possible if there is a governance
mechanism in place.

Beyond datasets

In this final section, we discuss important scientific and ethical questions that
are relevant to datasets but also go beyond datasets, pervading machine learning:
validity, problem framing, and limits to prediction.

Lessons from measurement

Measurement theory is an established science with ancient roots. In short, measure-
ment is about assigning numbers to objects in the real world in a way that reflects
relationships between these objects. Measurement draws an important distinction
between a construct that we wish to measure and the measurement procedure that
we used to create a numerical representation of the construct.

For example, we can think of a well-designed math exam as measuring the
mathematical abilities of a student. A student with greater mathematical ability
than another is expected to score higher on the exam. Viewed this way, an exam is
a measurement procedure that assigns numbers to students. The mathematical ability
of a student is the construct we hope to measure. We desire that the ordering of
these numbers reflects the sorting of students by their mathematical abilities. A
measurement procedure operationalizes a construct.

Every prediction problem has a target variable, the thing we’re trying to pre-
dict.4 By viewing the target variable as a construct, we can apply measurement
theory to understand what makes a good target variable.

The choice of a poor target variable cannot be ironed out with additional data.
In fact, the more data we feed into our model, the better it gets at capturing the
flawed target variable. Improved data quality or diversity are no cure either.

3The intended purpose of the derived dataset is to enable searching corpora of face images by
describable attributes.

4Recall that in a prediction problem we have covariates X from which we’re trying to predict a
variable Y. This variable Y is what we call the target variable in our prediction problem.
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All formal fairness criteria that involve the target variable, separation and
sufficiency being two prominent examples5, are either meaningless or downright
misleading when the target variable itself is the locus of discrimination.

But what makes a target variable good or bad? Let’s get a better grasp on this
question by considering a few examples.

1. Predicting the value of the Standard and Poor 500 Index (S&P 500) at the
close of the New York Stock Exchange tomorrow.

2. Predicting whether an individual is going to default on a loan.
3. Predicting whether an individual is going to commit a crime.

The first example is rather innocuous. It references a fairly robust target variable,
even though it relies on a number of social facts.

The second example is a common application of statistical modeling that
underlies much of modern credit scoring in the United States. At first sight a
default event seems like a clean cut target variable. But the reality is different. In
a public dataset by the Federal Reserve116 default events are coded by a so-called
performance variable that measures a serious delinquency in at least one credit line of a
certain time period. More specifically, the Federal Reserve report states that the

measure is based on the performance of new or existing accounts and
measures whether individuals have been late 90 days or more on one or
more of their accounts or had a public record item or a new collection
agency account during the performance period.6

Our third example runs into the most concerning measurement problem. How
do we determine if an individual committed a crime? What we can determine with
certainty is whether or not an individual was arrested and found guilty of a crime.
But this depends crucially on who is likely to be policed in the first place and who
is able to maneuver the criminal justice system successfully following an arrest.

Sorting out what a good target variable is, in full generality, can involve
the whole apparatus of measurement theory. The scope of measurement theory,
however, goes beyond defining reliable and valid target variables for prediction.
Measurement comes in whenever we create features for a machine learning problem
and should therefore be an essential part of the data creation process.544

Judging the quality of a measurement procedure is a difficult task. Measurement
theory has two important conceptual frameworks for arguing about what makes
measurement good. One is reliability. The other is validity.

Reliability describes the differences observed in multiple measurements of the
same object under identical conditions. Thinking of the measurement variable as a
random variable, reliability is about the variance between independent identically

5Recall from Chapter 3 that separation requires the protected attribute to be independent of
the prediction conditional on the target variable. Sufficiency requires the target variable to be
independent of the protected attribute given the prediction.

6Quote from the Federal Reserve report.
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distributed measurements. As such, reliability can be analogized with the statistical
notion of variance.

Validity is concerned with how well the measurement procedure in principle
captures the concept that we try to measure. If reliability is analogous to variance,
it is tempting to see validity as analogous to bias. But the situation is a bit more
complicated. There is no simple formal criterion that we could use to establish
validity. In practice, validity is based to a large extent on human expertise and
subjective judgments.

One approach to formalize validity is to ask how well a score predicts some
external criterion. This is called external validity. For example, we could judge a
measure of creditworthiness by how well it predicts default in a lending scenario.
While external validity leads to concrete technical criteria, it essentially identifies
good measurement with predictive accuracy. However, that’s certainly not all there
is to validity.

Construct validity is a framework for discussing validity that includes numerous
different types of evidence. Messick highlights six aspects of construct validity:

• Content: How well does the content of the measurement instrument, such as
the items on a questionnaire, measure the construct of interest?

• Substantive: Is the construct supported by a sound theoretical foundation?
• Structural: Does the score express relationships in the construct domain?
• Generalizability: Does the score generalize across different populations,

settings, and tasks?
• External: Does the score successfully predict external criteria?
• Consequential: What are the potential risks of using the score with regards

to bias, fairness, and distributive justice?

Of these different criteria, external validity is the one most familiar to the
machine learning practitioner. But machine learning practice would do well to
embrace the other, more qualitative, criteria as well. The consequential criterion
has been controversial, but Messick forcefully defends its inclusion as an aspect of
validity.545 Ultimately, measurement forces us to grapple with the often surpris-
ingly uncomfortable question: What are we even trying to do when we predict
something?

Problem framing: comparisons with humans

A long-standing ambition of artificial intelligence research is to match or exceed
human cognitive abilities by an algorithm. This desire often leads to comparisons
between humans and machines on various tasks. Judgments about human accuracy
often also enter the debate around when to use statistical models in high stakes
decision making settings.

The comparison between human decision makers and statistical models is by
no means new. For decades, researchers have compared the accuracy of human
judgments with that of statistical models.546
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Even within machine learning, the debate dates way back. A 1991 paper by
Bromley and Sackinger explicitly compared the performance of artificial neural
networks to a measure of human accuracy on the USPS digits dataset that predates
the famous MNIST data.491 A first experiment put the human accuracy at 2.5%, a
second experiment found the number 1.51%, while a third reported the number
2.37%.547

Comparison with so-called human baselines has since become widely accepted
in the machine learning community. The Electronic Frontier Foundation (EFF),
for example, hosts a major repository of AI progress measures that compares
the performance of machine learning models to reported human accuracies on
numerous benchmarks.

For the ILSVRC 2012 data, the reported human accuracy is 5.1%.7 This often
quoted number corresponds to the performance of a single human annotator who
was “trained on 500 images and annotated 1500 test images”.494 A second annotator
who was “trained on 100 images and then annotated 258 test images” achieved
an accuracy of 12%. Based on this number of 5.1%, researchers announced in
2015 that their model was “the first to surpass human-level performance”.548 Not
surprisingly, this claim received significant attention throughout the media.

However, a later more careful investigation into “human accuracy” on ImageNet
revealed a very different picture.549 The researchers found that only models from
2020 are actually on par with the strongest human labeler. Moreover, when
restricting the data to 590 object classes out of 1000 classes in total, the best human
labeler performed much better at less than 1% error than even the best predictive
models. Recall, that the ILSVRC 2012 data featured 118 different dog breeds alone,
some of which are extremely hard to distinguish for anyone who is not a trained
dog expert. In fact, the researchers had to consult with experts from the American
Kennel Club (AKC) to disambiguate challenging cases of different dog breeds.
Simply removing dog classes alone increases the performance of the best human
labeler to less than 1.3% error.

There is another troubling fact. Small variations in the data collection protocol
turn out to have a significant effect on the performance of machine classifiers:
“the accuracy scores of even the best image classifiers are still highly sensitive to
minutiae of the data cleaning process.”510

These results cast doubt not only on how me measure human accuracy, but also
on the validity of the presumed theoretical construct of “human accuracy” itself.
However, the machine learning community has adopted a rather casual approach
to measuring human accuracy. Many researchers assume that the construct of
human accuracy exists unambiguously and it is whatever number comes out of
some ad-hoc testing protocol for some set of human beings. These ad-hoc protocols
often result in anecdotal comparisons of questionable scientific value.

Invalid judgments about human performance relative to machines are not just
a scientific error, they also have the potential to create narratives that support
poor policy choices in high stakes policy questions around the use of predictive

7To be precise, this number is referring to the fraction of times that the correct image label was
not contained in the top 5 predicted labels of the model or human.
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models in consequential decisions. For example, criminal justice policy is being
driven by claims that statistical methods are superior to judges at predicting risk of
recidivism or failure to appear in court. However, these comparisons are dubious
because judges are not solving pure prediction problems but rather incorporate
other factors such as leniency towards younger defendants.2

Problem framing: focusing on a single optimization objective

Real-life problems rarely involve optimizing a single objective and more commonly
involve some kind of tradeoff between multiple objectives. How best to formulate
this as a statistical optimization problem is both an art and a science. However,
benchmark tasks, especially those with leaderboards, tend to pick a single objective.
For high-profile benchmarks, the resulting “overfitting to the problem formulation”
may result in scientific blind spots and limit the applicability of published findings
to practical settings.

For example, it was well known at the time Netflix launched its Prize that
recommendation is not just a matter of maximizing predictive accuracy and, even
to the extent that it is, there isn’t one single measure that’s always appropriate.550

Yet the contest focused purely on prediction accuracy evaluated by a single metric.
A few years after the contest ended, Netflix revealed that most of the work that
went into the leaderboard had not translated to production models. Part of the
reason was that the contest did not capture the range of Netflix’s objectives and
constraints: the tight dependence of recommendations on the user interface; the
fact that “users” are typically households made of members with differing tastes;
explainability; freshness, and many more.551

If many of the insights from the leaderboard did not even generalize to Netflix’s
own production setting, the gap between Netflix and other recommendation-
oriented platforms is far greater. Notably, as a movie platform, Netflix is unusual
in that it has a relatively static inventory compared to those with user-generated
content such as YouTube or Facebook. When the content pool is dynamic, a
different class of algorithms is needed. The pull that the Netflix Prize exerted on
recommender systems research may have diverted attention away from the latter
type of algorithm for many years, although it is hard to know for sure because the
counterfactual is unobservable.

Formal machine learning competitions, even if they cause blind spots due to
the need to pick a single optimization objective, are at least carefully structured
to promote scientific progress in some narrow sense. Arguably more damaging
are the informal competitions that seems to inevitably emerge in the presence of a
prominent benchmark dataset, resulting in unfortunate outcomes such as insightful
papers being rejected because they failed to beat the state of the art, or unoriginal
papers being published because they did beat the state of the art by (scientifically
insignificant) application of greater computing power.

Another downside to a field oriented around one-dimensional, competitive
pursuit is that it becomes structurally difficult to address biases in models and
classifiers. If a contestant takes steps to prevent dataset bias from propagating
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to their models, there will be an accuracy drop (because accuracy is judged on a
biased dataset) and fewer people will pay attention to the work.

As fairness issues in machine learning have gained prominence, fairness-
focused benchmarks datasets have proliferated, such as the Pilot Parliamentarians
Benchmark for facial analysis339 and the Equity Evaluation Corpus for sentiment
analysis.336 An advantage of this approach is that the scientific and cultural ma-
chinery of benchmark-oriented innovation can be repurposed for fairness research.
A potential danger is Goodhart’s law, which states, in its broad form, “When a
measure becomes a target, it ceases to be a good measure.” As we’ve emphasized
in this book, fairness is multifaceted, and benchmarks can capture only narrow
notions of fairness. While these can be useful diagnostics, if they are misconstrued
as targets in their own right, then research that is focused on optimizing for these
benchmarks may not result in fairness in a more substantive sense. In addition,
the construction of these datasets has often been haphazard, without adequate
attention to issues of validity.552

In addition to creating fairness-focused benchmarks, the algorithmic fairness
community has also repurposed earlier benchmarks toward the study of fairness
questions. Consider the Census dataset from the UCI repository discussed earlier.
It originally gained popularity as a source of real-world data. Its use is acceptable
for studying algorithmic questions such as, say, the relative strengths of decision
trees and logistic regression. We expect the answers to be insensitive to issues like
the cultural context of the data. But now it is being used for studying fairness
questions such as how classification accuracy tends to vary by race or gender.
For such questions, the answers are sensitive to the details of the subpopulations.
Further, the classification task associated with the benchmark (prediction of income
treated as a binary variable) is artificial and does not correspond to any real-life
application. Thus, accuracy disparities (and other fairness-related measurements)
may look different for a different task, or if the data had been sampled differently,
or if it came from a different time or place. Using benchmark datasets to make
generalizable claims about fairness requires careful attention to issues of context,
sampling, and validity. Bao et al. question whether benchmark datasets for socio-
technical systems like criminal justice are useful. They point out that benchmark
culture — where the focus is on methods, with the dataset being secondary and the
context ignored — is at odds with the actual needs of fairness and justice, where
attention to context is paramount.553

Limits of data and prediction

Machine learning fails in many scenarios and it’s important to understand the
failure cases as much as the success stories.

The Fragile Families Challenge was a machine learning competition based
on the Fragile Families and Child Wellbeing study (FFCWS).554 Starting from a
random sample of hospital births between 1998 and 2000, the FFCWS followed
thousand of American families over the course of 15 years, collecting detailed
information, about the families’ children, their parents, educational outcomes, and
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the larger social environment. Once a family agreed to participate in the study,
data were collected when the child was born, and then at ages 1, 3, 5, 9, and 15.

The Fragile Families Challenge concluded in 2017. The underlying dataset for
the competition contains 4242 rows, one for each family, and 12943 columns, one
for each variable plus an ID number of each family. Of the 12942 variables, 2358 are
constant (i.e., had the same value for all rows), mostly due to redactions for privacy
and ethics concerns. Of the approximately 55 million (4242 x 12942) entries in the
dataset, about 73% do not have a value. Missing values have many possible reasons,
including non-response of surveyed families, drop out of study participants, as
well as logical relationships between features that imply certain fields are missing
depending on how others are set. There are six outcome variables, measured at age
15: 1) child grade point average (GPA), 2) child grit, 3) household eviction, 4) household
material hardship, 5) caregiver layoff, and 6) caregiver participation in job training.

The goal of the competition was to predict the value of the outcome variables
at age 15 given the data from age 1 through 9. As is common for competitions, the
challenge featured a three-way data split: training, leaderboard, and test sets. The
training set is publicly available to all participants, the leaderboard data support a
leaderboard throughout the competition, and the test set is used to determine a
final winner.

The outcome of the prediction challenge was disappointing. Even the winning
models performed hardly better than a simple baseline their predictions didn’t
differ much compared to predicting the mean of each outcome.

What caused the poor performance of machine learning on the fragile families
data? One obvious possibility is that none of the contestants hit upon the right
machine learning techniques for this task. But the fact that 160 teams of motivated
experts submitted thousands of models over the course of five months makes this
highly unlikely. Besides, models from disparate model classes all made very similar
(and equally erroneous) predictions, suggesting that learning algorithms weren’t
the limitation.908 There are a few other technical possibilities that could explain
the disappointing performance, including the sample size, the study design, and
the missing values.

But there is also a more fundamental reason that remains plausible. Perhaps
the dynamics of life trajectories are inherently unpredictable over the six year time
delay between measurement of the covariates and measurement of the outcome.
This six year gap, for example, included the Great Recession, a period of economic
shocks and decline between 2007 and 2009, that might have changed trajectories in
unforeseeable ways.

In fact, there’s an important reason why even the performance of models in
the challenge, dismal as they were, may overestimate what we can expect in a
real-world setting. That’s because the models were allowed to peek into the future,
so to speak. The training and test sets were drawn from the same distribution and,
in particular, the same time period, as is the standard practice in machine learning

8This highlights an advantage of the benchmark dataset approach over one with less standardiza-
tion: even when there is a failure to make substantial progress on prediction, we can learn something
valuable from that failure.
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research. Thus, the data already incorporates information about the effect of the
Great Recession and other global shocks during this period. In a real application,
models must be trained on data from the past whereas predictions are about the
future. Thus, there is always some drift — a change in the relationship between
the covariates and the outcome. This puts a further limit on model performance.

Machine learning works best in a static and stable world where the past looks
like the future. Prediction alone can be a poor choice when we’re anticipating
dynamic changes, or when we are trying to reason about the effect that hypothetical
actions would have in the real world.

Summary

Benchmark datasets are central to machine learning. They play many roles includ-
ing enabling algorithmic innovation, measuring progress, and providing training
data. Since its systematization in the late 1980s, performance evaluation on bench-
marks has gradually become a ubiquitous practice because it makes it harder for
researchers to cheat intentionally or unintentionally.

But an excessive focus on benchmarks brings many drawbacks. Researchers
spend prodigious amounts of effort optimizing models to achieve state of the art
performance. The results are often both scientifically uninteresting and of little
relevance to practitioners because benchmarks omit many real-world details. The
approach also amplifies the harms associated with data including downstream
harms, representational harms, and privacy violations.

As we write this book, the benchmark approach is coming under scrutiny
because of these ethical concerns. While the benefits and drawbacks of benchmarks
are both well known, our overarching goal in this chapter has been to provide
a single framework that can help analyze both. Our position is that the core of
the benchmark approach is worth preserving, but we envision a future where
benchmarks play a more modest role as one of many ways to advance knowledge.
To mitigate the harms associated with data, we believe that substantial changes
to the practices of dataset creation, use, and governance are necessary. We have
outlined a few ways to do this, adding to the emerging literature on this topic.

Chapter notes

This chapter was developed and first published by Hardt and Recht in the textbook
Patterns, Predictions, and Actions: Foundations of Machine Learning.119 With permission
from the authors, we include a large part of the original text here with only slight
modifications. We removed a significant amount of material on adaptive data
analysis and the problem of overfitting in machine learning benchmarks. We added
new material on the roles that datasets play, as well as discussion about fairness
and ethical concerns relating to datasets.

Adaptivity in holdout reuse was studied by Dwork et al.555 and there has been
subsequent work in the area of adaptive data analysis. Similar concerns go under
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the name of inference after selection in the statistics community.
The collection and use of large ad-hoc data sets (once referred to as “big

data”) has been scrutinized in several important works, see, for example, boyd and
Crawford,556 as well as Tufekci.557, 558 More recently, Couldry and Mejias559 use the
term data colonialism to emphasize the processes by which data are appropriated
and marginalized communities are exploited through data collection. Olteanu et
al.560 discuss biases, methodological pitfalls, and ethical questions in the context
of social data analysis. In particular, the article provides taxonomies of biases
and issues that can arise in the sourcing, collection, processing, and analysis of
social data. Bowker and Star’s classic text explains why categorization is a morally
laden activity.191 For a discussion of the harms of category systems embedded in
machine learning datasets, see Atlas of AI.561

The benefits of the benchmark dataset approach are discussed in a talk by
Mark Liberman, who calls it the common task method.562 Paullada, Raji, Ben-
der, Denton, and Hanna survey dataset development and use cases in machine
learning research.563 A survey by Fabris, Messina, Silvello, and Susto lists and
discusses numerous datasets uses throughout the fairness literature.564 Denton,
Hanna, Amironesei, Smart and Nicole provide a genealogy of ImageNet through
a critical lens.565 Raji, Bender, Paullada, Denton and Hanna give an overview
of concerns arising from basing our understanding of progress on a small col-
lection of influential benchmarks.566 The EFF AI metrics project is available at:
https://www.eff.org/ai/metrics.

For an introduction to measurement theory, not specific to the social sciences,
see the books by Hand.567, 568 The textbook by Bandalos569 focuses on applications
to the social science, including a chapter on fairness. Liao, Taori, Raji and Schmidt
provide a taxonomy of evaluation failures across many subfields of machine
learning, encompassing both internal and external validity issues.570
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