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Introduction

Our success, happiness, and wellbeing are never fully of our own making.
Others’ decisions can profoundly affect the course of our lives: whether to admit us
to a particular school, offer us a job, or grant us a mortgage. Arbitrary, inconsistent,
or faulty decision-making thus raises serious concerns because it risks limiting
our ability to achieve the goals that we have set for ourselves and access the
opportunities for which we are qualified.

So how do we ensure that these decisions are made the right way and for the
right reasons? While there’s much to value in fixed rules, applied consistently, good
decisions take available evidence into account. We expect admissions, employment,
and lending decisions to rest on factors that are relevant to the outcome of interest.

Identifying details that are relevant to a decision might happen informally and
without much thought: employers might observe that people who study math
seem to perform particularly well in the financial industry. But they could test
these observations against historical evidence by examining the degree to which
one’s major correlates with success on the job. This is the traditional work of
statistics—and it promises to provide a more reliable basis for decision-making by
quantifying how much weight to assign certain details in our determinations.

A body of research has compared the accuracy of statistical models to the
judgments of humans, even experts with years of experience. In many head-to-
head comparisons on fixed tasks, data-driven decisions are more accurate than
those based on intuition or expertise. As one example, in a 2002 study, automated
underwriting of loans was both more accurate and less racially disparate.1 These
results have been welcomed as a way to ensure that the high-stakes decisions that
shape our life chances are both accurate and fair.

Machine learning promises to bring greater discipline to decision-making
because it offers to uncover factors that are relevant to decision-making that
humans might overlook, given the complexity or subtlety of the relationships in
historical evidence. Rather than starting with some intuition about the relationship
between certain factors and an outcome of interest, machine learning lets us defer
the question of relevance to the data themselves: which factors—among all that we
have observed—bear a statistical relationship to the outcome.

Uncovering patterns in historical evidence can be even more powerful than
this might seem to suggest. Breakthroughs in computer vision—specifically object
recognition—reveal just how much pattern-discovery can achieve. In this domain,
machine learning has helped to overcome a strange fact of human cognition: while
we may be able to effortlessly identify objects in a scene, we are unable to specify
the full set of rules that we rely upon to make these determinations. We cannot
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hand code a program that exhaustively enumerates all the relevant factors that
allow us to recognize objects from every possible perspective or in all their potential
visual configurations. Machine learning aims to solve this problem by abandoning
the attempt to teach a computer through explicit instruction in favor of a process
of learning by example. By exposing the computer to many examples of images
containing pre-identified objects, we hope the computer will learn the patterns that
reliably distinguish different objects from one another and from the environments
in which they appear.

This can feel like a remarkable achievement, not only because computers can
now execute complex tasks but also because the rules for deciding what appears in
an image seem to emerge from the data themselves.

But there are serious risks in learning from examples. Learning is not a process
of simply committing examples to memory. Instead, it involves generalizing from
examples: honing in on those details that are characteristic of (say) cats in general,
not just the specific cats that happen to appear in the examples. This is the process
of induction: drawing general rules from specific examples—rules that effectively
account for past cases, but also apply to future, as yet unseen cases, too. The hope
is that we’ll figure out how future cases are likely to be similar to past cases, even
if they are not exactly the same.

This means that reliably generalizing from historical examples to future cases
requires that we provide the computer with good examples: a sufficiently large
number of examples to uncover subtle patterns; a sufficiently diverse set of ex-
amples to showcase the many different types of appearances that objects might
take; a sufficiently well-annotated set of examples to furnish machine learning
with reliable ground truth; and so on. Thus, evidence-based decision-making is
only as reliable as the evidence on which it is based, and high quality examples
are critically important to machine learning. The fact that machine learning is
“evidence-based” by no means ensures that it will lead to accurate, reliable, or fair
decisions.

This is especially true when using machine learning to model human behavior
and characteristics. Our historical examples of the relevant outcomes will almost
always reflect historical prejudices against certain social groups, prevailing cultural
stereotypes, and existing demographic inequalities. And finding patterns in these
data will often mean replicating these very same dynamics.

Something else is lost in moving to automated, predictive decision making.
Human decision makers rarely try to maximize predictive accuracy at all costs;
frequently, they might consider factors such as whether the attributes used for
prediction are morally relevant. For example, although younger defendants are
statistically more likely to re-offend, judges are loath to take this into account in
deciding sentence lengths, viewing younger defendants as less morally culpable.
This is one reason to be cautious of comparisons seemingly showing the superiority
of statistical decision making.2 Humans are also unlikely to make decisions that
are obviously absurd, but this could happen with automated decision making,
perhaps due to erroneous data. These and many other differences between human
and automated decision making are reasons why decision making systems that
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rely on machine learning might be unjust.
We write this book as machine learning begins to play a role in especially

consequential decision-making. In the criminal justice system, as alluded to above,
defendants are assigned statistical scores that are intended to predict the risk of
committing future crimes, and these scores inform decisions about bail, sentencing,
and parole. In the commercial sphere, firms use machine learning to analyze and
filter resumes of job applicants. And statistical methods are of course the bread
and butter of lending, credit, and insurance underwriting.

We now begin to survey the risks in these and many other applications of
machine learning, and provide a critical review of an emerging set of proposed
solutions. We will see how even well-intentioned applications of machine learning
might give rise to objectionable results.

Demographic disparities

Amazon uses a data-driven system to determine the neighborhoods in which to
offer free same-day delivery. A 2016 investigation found stark disparities in the
demographic makeup of these neighborhoods: in many U.S. cities, White residents
were more than twice as likely as Black residents to live in one of the qualifying
neighborhoods.3

Now, we don’t know the details of how Amazon’s system works, and in
particular we don’t know to what extent it uses machine learning. The same is true
of many other systems reported on in the press. Nonetheless, we’ll use these as
motivating examples when a machine learning system for the task at hand would
plausibly show the same behavior.

In Chapter 3 we’ll see how to make our intuition about demographic dispar-
ities mathematically precise, and we’ll see that there are many possible ways of
measuring these inequalities. The pervasiveness of such disparities in machine
learning applications is a key concern of this book.

When we observe disparities, it doesn’t imply that the designer of the system
intended for such inequalities to arise. Looking beyond intent, it’s important to
understand when observed disparities can be considered to be discrimination. In
turn, two key questions to ask are whether the disparities are justified and whether
they are harmful. These questions rarely have simple answers, but the extensive
literature on discrimination in philosophy and sociology can help us reason about
them.

To understand why the racial disparities in Amazon’s system might be harmful,
we must keep in mind the history of racial prejudice in the United States, its
relationship to geographic segregation and disparities, and the perpetuation of
those inequalities over time. Amazon argued that its system was justified because
it was designed based on efficiency and cost considerations and that race wasn’t
an explicit factor. Nonetheless, it has the effect of providing different opportunities
to consumers at racially disparate rates. The concern is that this might contribute
to the perpetuation of long-lasting cycles of inequality. If, instead, the system had
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been found to be partial to ZIP codes ending in an odd digit, it would not have
triggered a similar outcry.

The term bias is often used to refer to demographic disparities in algorithmic
systems that are objectionable for societal reasons. We’ll minimize the use of this
sense of the word bias in this book, since different disciplines and communities
understand the term differently, and this can lead to confusion. There’s a more
traditional use of the term bias in statistics and machine learning. Suppose that
Amazon’s estimates of delivery dates/times were consistently too early by a few
hours. This would be a case of statistical bias. A statistical estimator is said to be
biased if its expected or average value differs from the true value that it aims to
estimate. Statistical bias is a fundamental concept in statistics, and there is a rich
set of established techniques for analyzing and avoiding it.

There are many other measures that quantify desirable statistical properties of
a predictor or an estimator, such as precision, recall, and calibration. These are
similarly well understood; none of them require any knowledge of social groups
and are relatively straightforward to measure. The attention to demographic
criteria in statistics and machine learning is a relatively new direction. This reflects
a change in how we conceptualize machine learning systems and the responsibilities
of those building them. Is our goal to faithfully reflect the data? Or do we have
an obligation to question the data, and to design our systems to conform to some
notion of equitable behavior, regardless of whether or not that’s supported by the
data currently available to us? These perspectives are often in tension, and the
difference between them will become clearer when we delve into stages of machine
learning.

The machine learning loop

Let’s study the pipeline of machine learning and understand how demographic
disparities propagate through it. This approach lets us glimpse into the black box
of machine learning and will prepare us for the more detailed analyses in later
chapters. Studying the stages of machine learning is crucial if we want to intervene
to minimize disparities.

The figure below shows the stages of a typical system that produces outputs
using machine learning. Like any such diagram, it is a simplification, but it is
useful for our purposes.

The first stage is measurement, which is the process by which the state of the
world is reduced to a set of rows, columns, and values in a dataset. It’s a messy
process, because the real world is messy. The term measurement is misleading,
evoking an image of a dispassionate scientist recording what she observes, whereas
we’ll see that it requires subjective human decisions.

The ‘learning’ in machine learning refers to the next stage, which is to turn
that data into a model. A model summarizes the patterns in the training data; it
makes generalizations. A model could be trained using supervised learning via an
algorithm such as Support Vector Machines, or using unsupervised learning via
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Figure 1: The machine learning loop

an algorithm such as k-means clustering. It could take many forms: a hyperplane
or a set of regions in n-dimensional space, or a set of distributions. It is typically
represented as a set of weights or parameters.

The next stage is the action we take based on the model’s predictions, which are
applications of the model to new, unseen inputs. By the way, ‘prediction’ is another
misleading term—while it does sometimes involve trying to predict the future (“is
this patient at high risk for cancer?”), sometimes it doesn’t (“is this social media
account a bot?”).

Prediction can take the form of classification (determine whether a piece of
email is spam), regression (assigning risk scores to defendants), or information
retrieval (finding documents that best match a search query).
The actions in these three applications might be: depositing the email in the
user’s inbox or spam folder, deciding whether to set bail for the defendant’s pre-
trial release, and displaying the retrieved search results to the user. They may
differ greatly in their significance to the individual, but they have in common
that the collective responses of individuals to these decisions alter the state of the
world—that is, the underlying patterns that the system aims to model.

Some machine learning systems record feedback from users (how users react to
actions) and use them to refine the model. For example, search engines track what
users click on as an implicit signal of relevance or quality. Feedback can also occur
unintentionally, or even adversarially; these are more problematic, as we’ll explore
later in this chapter.

The state of society

In this book, we’re concerned with applications of machine learning that involve
data about people. In these applications, the available training data will likely
encode the demographic disparities that exist in our society. For example, the
figure shows the gender breakdown of a sample of occupations in the United States,
based on data released by the Bureau of Labor Statistics for the year 2017.

Unsurprisingly, many occupations have stark gender imbalances. If we’re
building a machine learning system that screens job candidates, we should be
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Figure 2: A sample of occupations in the United States in decreasing order of the
percentage of women. The area of the bubble represents the number of workers.

keenly aware that this is the baseline we’re starting from. It doesn’t necessarily
mean that the outputs of our system will be inaccurate or discriminatory, but
throughout this chapter we’ll see how it complicates things.

Why do these disparities exist? There are many potentially contributing factors,
including a history of explicit discrimination, implicit attitudes and stereotypes
about gender, and differences in the distribution of certain characteristics by gender.
We’ll see that even in the absence of explicit discrimination, stereotypes can be self-
fulfilling and persist for a long time in society. As we integrate machine learning
into decision-making, we should be careful to ensure that ML doesn’t become a
part of this feedback loop.

What about applications that aren’t about people? Consider “Street Bump,” a
project by the city of Boston to crowdsource data on potholes. The smartphone app
automatically detects potholes using data from the smartphone’s sensors and sends
the data to the city. Infrastructure seems like a comfortably boring application of
data-driven decision-making, far removed from the ethical quandaries we’ve been
discussing. And yet! Kate Crawford points out that the data reflect the patterns of
smartphone ownership, which are higher in wealthier parts of the city compared
to lower-income areas and areas with large elderly populations.4 The lesson here is
that it’s rare for machine learning applications to not be about people. In the case
of Street Bump, the data is collected by people, and hence reflects demographic
disparities; besides, the reason we’re interested in improving infrastructure in the
first place is its effect on people’s lives.

To drive home the point that most machine learning applications involve
people, we analyzed Kaggle, a well-known platform for data science competitions.
We focused on the top 30 competitions sorted by prize amount. In 14 of these
competitions, we observed that the task is to make decisions about individuals.
In most of these cases, there exist societal stereotypes or disparities that may be
perpetuated by the application of machine learning. For example, the Automated
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Essay Scoring5 task seeks algorithms that attempt to match the scores of human
graders of student essays. Students’ linguistic choices are signifiers of social group
membership, and human graders are known to sometimes have prejudices based
on such factors.6, 7 Thus, because human graders must provide the original labels,
automated grading systems risk enshrining any such discriminatory patterns that
are captured in the training data.

In a further 5 of the 30 competitions, the task did not call for making decisions
about people, but decisions made using the model would nevertheless directly
impact people. For example, one competition sponsored by real-estate company
Zillow calls for improving the company’s “Zestimate” algorithm for predicting
home sale prices. Any system that predicts a home’s future sale price (and
publicizes these predictions) is likely to create a self-fulfilling feedback loop in
which homes predicted to have lower sale prices deter future buyers, suppressing
demand and lowering the final sale price.

In 9 of the 30 competitions, we did not find an obvious, direct impact on people,
such as a competition on predicting ocean health (of course, even such competitions
have indirect impacts on people, due to actions that we might take on the basis of
the knowledge gained). In two cases, we didn’t have enough information to make
a determination.

To summarize, human society is full of demographic disparities, and training
data will likely reflect these. We’ll now turn to the process by which training data
is constructed, and see that things are even trickier.

The trouble with measurement

The term measurement suggests a straightforward process, calling to mind a camera
objectively recording a scene. In fact, measurement is fraught with subjective
decisions and technical difficulties.

Consider a seemingly straightforward task: measuring the demographic di-
versity of college campuses. A 2017 New York Times article aimed to do just
this, and was titled “Even With Affirmative Action, Blacks and Hispanics Are
More Underrepresented at Top Colleges Than 35 Years Ago”.8 The authors argue
that the gap between enrolled Black and Hispanic freshmen and the Black and
Hispanic college-age population has grown over the past 35 years. To support
their claim, they present demographic information for more than 100 American
universities and colleges from the year 1980 to 2015, and show how the percentages
of Black, Hispanic, Asian, White, and multiracial students have changed over the
years. Interestingly, the multiracial category was only recently introduced in 2008,
but the comparisons in the article ignore the introduction of this new category.
How many students who might have checked the “White” or “Black” box checked
the “multiracial” box instead? How might this have affected the percentages of
“White” and “Black” students at these universities? Furthermore, individuals’
and society’s conception of race changes over time. Would a person with Black
and Latino parents be more inclined to self-identify as Black in 2015 than in the
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1980s? The point is that even a seemingly straightforward question about trends in
demographic diversity is impossible to answer without making some assumptions,
and illustrates the difficulties of measurement in a world that resists falling neatly
into a set of checkboxes. Race is not a stable category; how we measure race often
changes how we conceive of it, and changing conceptions of race may force us to
alter what we measure.

To be clear, this situation is typical: measuring almost any attribute about
people is similarly subjective and challenging. If anything, things are more chaotic
when machine learning researchers have to create categories, as is often the case.

One area where machine learning practitioners often have to define new cate-
gories is in defining the target variable.9 This is the outcome that we’re trying to
predict – will the defendant recidivate if released on bail? Will the candidate be a
good employee if hired? And so on.

Biases in the definition of the target variable are especially critical, because they
are guaranteed to bias the predictions relative to the actual construct we intended
to predict, as is the case when we use arrests as a measure of crime, or sales as a
measure of job performance, or GPA as a measure of academic success. This is not
necessarily so with other attributes. But the target variable is arguably the hardest
from a measurement standpoint, because it is often a construct that is made up for
the purposes of the problem at hand rather than one that is widely understood
and measured. For example, “creditworthiness” is a construct that was created in
the context of the problem of how to successfully extend credit to consumers;9 it is
not an intrinsic property that people either possess or lack.

If our target variable is the idea of a “good employee”, we might use perfor-
mance review scores to quantify it. This means that our data inherits any biases
present in managers’ evaluations of their reports. Another example: the use of
computer vision to automatically rank people’s physical attractiveness.10, 11 The
training data consists of human evaluation of attractiveness, and, unsurprisingly,
all these classifiers showed a preference for lighter skin.

In some cases we might be able to get closer to a more objective definition for a
target variable, at least in principle. For example, in criminal risk assessment, the
training data is not judges’ decisions about bail, but rather based on who actually
went on to commit a crime. But there’s at least one big caveat—we can’t really
measure who committed a crime, so we use arrests as a proxy. This means that
the training data contain distortions not due to the prejudices of judges but due
to discriminatory policing. On the other hand, if our target variable is whether
the defendant appears or fails to appear in court for trial, we would be able to
measure it directly with perfect accuracy. That said, we may still have concerns
about a system that treats defendants differently based on predicted probability
of appearance, given that some reasons for failing to appear are less objectionable
than others (trying to hold down a job that would not allow for time off versus
trying to avoid prosecution).12

In hiring, instead of relying on performance reviews for (say) a sales job, we
might rely on the number of sales closed. But is that an objective measurement or
is it subject to the prejudices of the potential customers (who might respond more
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positively to certain salespeople than others) and workplace conditions (which
might be a hostile environment for some, but not others)?

In some applications, researchers repurpose an existing scheme of classification
to define the target variable rather than creating one from scratch. For example,
an object recognition system can be created by training a classifier on ImageNet, a
database of images organized in a hierarchy of concepts.13 ImageNet’s hierarchy
comes from Wordnet, a database of words, categories, and the relationships among
them.14 Wordnet’s authors in turn imported the word lists from a number of older
sources, such as thesauri. As a result, WordNet (and ImageNet) categories contain
numerous outmoded words and associations, such as occupations that no longer
exist and stereotyped gender associations.15

We think of technology changing rapidly and society being slow to adapt, but
at least in this instance, the categorization scheme at the heart of much of today’s
machine learning technology has been frozen in time while social norms have
changed.

Our favorite example of measurement bias has to do with cameras, which
we referenced at the beginning of the section as the exemplar of dispassionate
observation and recording. But are they?

The visual world has an essentially infinite bandwidth compared to what can
be captured by cameras, whether film or digital, which means that photography
technology involves a series of choices about what is relevant and what isn’t,
and transformations of the captured data based on those choices. Both film and
digital cameras have historically been more adept at photographing lighter-skinned
individuals.16 One reason is the default settings such as color balance which
were optimized for lighter skin tones. Another, deeper reason is the limited
“dynamic range” of cameras, which makes it hard to capture brighter and darker
tones in the same image. This started changing in the 1970s, in part due to
complaints from furniture companies and chocolate companies about the difficulty
of photographically capturing the details of furniture and chocolate respectively!
Another impetus came from the increasing diversity of television subjects at this
time.

When we go from individual images to datasets of images, we introduce another
layer of potential biases. Consider the image datasets that are used to train today’s
computer vision systems for tasks such as object recognition. If these datasets
were representative samples of an underlying visual world, we might expect that
a computer vision system trained on one such dataset would do well on another
dataset. But in reality, we observe a big drop in accuracy when we train and test
on different datasets.17 This shows that these datasets are biased relative to each
other in a statistical sense, and is a good starting point for investigating whether
these biases include cultural stereotypes.

It’s not all bad news: machine learning can in fact help mitigate measure-
ment biases. Returning to the issue of dynamic range in cameras, computational
techniques, including machine learning, are making it possible to improve the
representation of tones in images.18, 19, 20 Another example comes from medicine:
diagnoses and treatments are sometimes personalized by race. But it turns out that
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race is used as a crude proxy for ancestry and genetics, and sometimes environ-
mental and behavioral factors.21, 22 If we can measure the factors that are medically
relevant and incorporate them—instead of race—into statistical models of disease
and drug response, we can increase the accuracy of diagnoses and treatments while
mitigating racial disparities.

To summarize, measurement involves defining variables of interest, the process
for interacting with the real world and turning observations into numbers, and
then actually collecting the data. Often machine learning practitioners don’t think
about these steps, because someone else has already done those things. And yet
it is crucial to understand the provenance of the data. Even if someone else has
collected the data, it’s almost always too messy for algorithms to handle, hence
the dreaded “data cleaning” step. But the messiness of the real world isn’t just an
annoyance to be dealt with by cleaning. It is a manifestation of a diverse world in
which people don’t fit neatly into categories. Being inattentive to these nuances
can particularly hurt marginalized populations.

From data to models

We’ve seen that training data reflects the disparities, distortions, and biases from
the real world and the measurement process. This leads to an obvious question:
when we learn a model from such data, are these disparities preserved, mitigated,
or exacerbated?

Predictive models trained with supervised learning methods are often good
at calibration: ensuring that the model’s prediction subsumes all features in the
data for the purpose of predicting the outcome. But calibration also means that by
default, we should expect our models to faithfully reflect disparities found in the
input data.

Here’s another way to think about it. Some patterns in the training data (smok-
ing is associated with cancer) represent knowledge that we wish to mine using
machine learning, while other patterns (girls like pink and boys like blue) represent
stereotypes that we might wish to avoid learning. But learning algorithms have
no general way to distinguish between these two types of patterns, because they
are the result of social norms and moral judgments. Absent specific intervention,
machine learning will extract stereotypes, including incorrect and harmful ones, in
the same way that it extracts knowledge.

A telling example of this comes from machine translation. The screenshot on
the right shows the result of translating sentences from English to Turkish and
back.23 The same stereotyped translations result for many pairs of languages and
other occupation words in all translation engines we’ve tested. It’s easy to see
why. Turkish has gender neutral pronouns, and when translating such a pronoun
to English, the system picks the sentence that best matches the statistics of the
training set (which is typically a large, minimally curated corpus of historical text
and text found on the web).

When we build a statistical model of language from such text, we should
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Figure 3: Translating from English to Turkish, then back to English injects gender
stereotypes.

expect the gender associations of occupation words to roughly mirror real-world
labor statistics. In addition, because of the male-as-norm bias24 (the use of male
pronouns when the gender is unknown) we should expect translations to favor
male pronouns. It turns out that when we repeat the experiment with dozens
of occupation words, these two factors—labor statistics and the male-as-norm
bias—together almost perfectly predict which pronoun will be returned.23

Here’s a tempting response to the observation that models reflect data biases.
Suppose we’re building a model for scoring resumes for a programming job. What
if we simply withhold gender from the data? Is that a sufficient response to
concerns about gender discrimination? Unfortunately, it’s not that simple, because
of the problem of proxies9 or redundant encodings,25 as we’ll discuss in Chapter
3. There are any number of other attributes in the data that might correlate with
gender. For example, in our society, the age at which someone starts programming
is correlated with gender. This illustrates why we can’t just get rid of proxies: they
may be genuinely relevant to the decision at hand. How long someone has been
programming is a factor that gives us valuable information about their suitability
for a programming job, but it also reflects the reality of gender stereotyping.

Another common reason why machine learning might perform worse for some
groups than others is sample size disparity. If we construct our training set by
sampling uniformly from the training data, then by definition we’ll have fewer data
points about minorities. Of course, machine learning works better when there’s
more data, so it will work less well for members of minority groups, assuming that
members of the majority and minority groups are systematically different in terms
of the prediction task.25
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Worse, in many settings minority groups are underrepresented relative to
population statistics. For example, minority groups are underrepresented in the
tech industry. Different groups might also adopt technology at different rates,
which might skew datasets assembled form social media. If training sets are drawn
from these unrepresentative contexts, there will be even fewer training points from
minority individuals.

When we develop machine-learning models, we typically only test their overall
accuracy; so a “5% error” statistic might hide the fact that a model performs
terribly for a minority group. Reporting accuracy rates by group will help alert
us to problems like the above example. In Chapter 3, we’ll look at metrics that
quantify the error-rate disparity between groups.

There’s one application of machine learning where we find especially high
error rates for minority groups: anomaly detection. This is the idea of detecting
behavior that deviates from the norm as evidence of abuse against a system. A
good example is the Nymwars controversy, where Google, Facebook, and other tech
companies aimed to block users who used uncommon (hence, presumably fake)
names.

Further, suppose that in some cultures, most people receive names from a small
set of names, whereas in other cultures, names might be more diverse, and it might
be common for names to be unique. For users in the latter culture, a popular name
would be more likely to be fake. In other words, the same feature that constitutes
evidence towards a prediction in one group might constitute evidence against the
prediction for another group.25

If we’re not careful, learning algorithms will generalize based on the majority
culture, leading to a high error rate for minority groups. Attempting to avoid this
by making the model more complex runs into a different problem: overfitting to
the training data, that is, picking up patterns that arise due to random noise rather
than true differences. One way to avoid this is to explicitly model the differences
between groups, although there are both technical and ethical challenges associated
with this.

The pitfalls of action

Any real machine-learning system seeks to make some change in the world. To
understand its effects, then, we have to consider it in the context of the larger
socio-technical system in which it is embedded.

In Chapter 3, we’ll see that if a model is calibrated—it faithfully captures the
patterns in the underlying data—predictions made using that model will inevitably
have disparate error rates for different groups, if those groups have different base
rates, that is, rates of positive or negative outcomes. In other words, understanding
the properties of a prediction requires understanding not just the model, but
also the population differences between the groups on which the predictions are
applied.

Further, population characteristics can shift over time; this is a well-known
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machine learning phenomenon known as drift. If sub-populations change differ-
ently over time, but the model isn’t retrained, that can introduce disparities. An
additional wrinkle: whether or not disparities are objectionable may differ between
cultures, and may change over time as social norms evolve.

When people are subject to automated decisions, their perception of those
decisions depends not only on the outcomes but also the process of decision-
making. An ethical decision-making process might require, among other things,
the ability to explain a prediction or decision, which might not be feasible with
black-box models.

A major limitation of machine learning is that it only reveals correlations, but
we often use its predictions as if they reveal causation. This is a persistent source of
problems. For example, an early machine learning system in healthcare famously
learned the seemingly nonsensical rule that patients with asthma had lower risk of
developing pneumonia. This was a true pattern in the data, but the likely reason
was that asthmatic patients were more likely to receive in-patient care.26 So it’s
not valid to use the prediction to decide whether or not to admit a patient. We’ll
discuss causality in Chapter 5.

Another way to view this example is that the prediction affects the outcome
(because of the actions taken on the basis of the prediction), and thus invalidates
itself. The same principle is also seen in the use of machine learning for predicting
traffic congestion: if sufficiently many people choose their routes based on the
prediction, then the route predicted to be clear will in fact be congested. The effect
can also work in the opposite direction: the prediction might reinforce the outcome,
resulting in feedback loops. To better understand how, let’s talk about the final
stage in our loop: feedback.

Feedback and feedback loops

Many systems receive feedback when they make predictions. When a search engine
serves results, it typically records the links that the user clicks on and how long
the user spends on those pages, and treats these as implicit signals about which
results were found to be most relevant. When a video sharing website recommends
a video, it uses the thumbs up/down feedback as an explicit signal. Such feedback
is used to refine the model.

But feedback is tricky to interpret correctly. If a user clicked on the first link
on a page of search results, is that simply because it was first, or because it was in
fact the most relevant? This is again a case of the action (the ordering of search
results) affecting the outcome (the link(s) the user clicks on). This is an active area
of research; there are techniques that aim to learn accurately from this kind of
biased feedback.27

Bias in feedback might also reflect cultural prejudices, which is of course much
harder to characterize than the effects of the ordering of search results. For example,
the clicks on the targeted ads that appear alongside search results might reflect
gender and racial stereotypes. There’s a well-known study by Latanya Sweeney
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that hints at this: Google searches for Black-sounding names such as “Latanya
Farrell” were much more likely to results in ads for arrest records (“Latanya Farrell,
Arrested?”) than searches for White-sounding names (“Kristen Haring”).28 One
potential explanation is that users are more likely to click on ads that conform to
stereotypes, and the advertising system is optimized for maximizing clicks.

In other words, even feedback that’s designed into systems can lead to unex-
pected or undesirable biases. But on top of that, there are many unintended ways
in which feedback might arise, and these are more pernicious and harder to control.
Let’s look at three.

Self-fulfilling predictions. Suppose a predictive policing system determines certain
areas of a city to be at high risk for crime. More police officers might be deployed to
such areas. Alternatively, officers in areas predicted to be high risk might be subtly
lowering their threshold for stopping, searching, or arresting people—perhaps even
unconsciously. Either way, the prediction will appear to be validated, even if it had
been made purely based on data biases.

Here’s another example of how acting on a prediction can change the outcome.
In the United States, some criminal defendants are released prior to trial, whereas
for others, a bail amount is set as a precondition of release. Many defendants are
unable to post bail. Does the release or detention affect the outcome of the case?
Perhaps defendants who are detained face greater pressure to plead guilty. At any
rate, how could one possibly test the causal impact of detention without doing an
experiment? Intriguingly, we can take advantage of a pseudo-experiment, namely
that defendants are assigned bail judges quasi-randomly, and some judges are
stricter than others. Thus, pre-trial detention is partially random, in a quantifiable
way. Studies using this technique have confirmed that detention indeed causes an
increase in the likelihood of a conviction.29 If bail were set based on risk predictions,
whether human or algorithmic, and we evaluated its efficacy by examining case
outcomes, we would see a self-fulfilling effect.

Predictions that affect the training set. Continuing this example, predictive policing
activity will lead to arrests, records of which might be added to the algorithm’s
training set. These areas might then continue to appear to be at high risk of crime,
and perhaps also other areas with a similar demographic composition, depending
on the feature set used for predictions. The disparities might even compound over
time.

A 2016 paper by Lum and Isaac analyzed a predictive policing algorithm by
PredPol. This is of the few predictive policing algorithms to be published in
a peer-reviewed journal, for which the company deserves praise. By applying
the algorithm to data derived from Oakland police records, the authors found
that Black people would be targeted for predictive policing of drug crimes at
roughly twice the rate of White people, even though the two groups have roughly
equal rates of drug use.30 Their simulation showed that this initial bias would be
amplified by a feedback loop, with policing increasingly concentrated on targeted
areas. This is despite the fact that the PredPol algorithm does not explicitly take
demographics into account.

A follow-up paper built on this idea and showed mathematically how feedback
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loops occur when data discovered on the basis of predictions are used to update
the model.31 The paper also shows how to tweak the model to avoid feedback
loops in a simulated setting: by quantifying how surprising an observation of crime
is given the predictions, and only updating the model in response to surprising
events.

Predictions that affect the phenomenon and society at large. Prejudicial policing on
a large scale, algorithmic or not, will affect society over time, contributing to the
cycle of poverty and crime. This is a well-trodden thesis, and we’ll briefly review
the sociological literature on durable inequality and the persistence of stereotypes
in Chapter 8.

Let us remind ourselves that we deploy machine learning so that we can act on
its predictions. It is hard to even conceptually eliminate the effects of predictions
on outcomes, future training sets, the phenomena themselves, or society at large.
The more central machine learning becomes in our lives, the stronger this effect.

Returning to the example of a search engine, in the short term it might be
possible to extract an unbiased signal from user clicks, but in the long run, results
that are returned more often will be linked to and thus rank more highly. As
a side effect of fulfilling its purpose of retrieving relevant information, a search
engine will necessarily change the very thing that it aims to measure, sort, and
rank. Similarly, most machine learning systems will affect the phenomena that
they predict. This is why we’ve depicted the machine learning process as a loop.

Throughout this book we’ll learn methods for mitigating societal biases in
machine learning, but we should keep in mind that there are fundamental lim-
its to what we can achieve, especially when we consider machine learning as
a socio-technical system instead of a mathematical abstraction. The textbook
model of training and test data being independent and identically distributed is a
simplification, and might be unachievable in practice.

Getting concrete with a toy example

Now let’s look at a concrete setting, albeit a toy problem, to illustrate many of the
ideas discussed so far, and some new ones.

Let’s say you’re on a hiring committee, making decisions based on just two
attributes of each applicant: their college GPA and their interview score (we did
say it’s a toy problem!). We formulate this as a machine-learning problem: the
task is to use these two variables to predict some measure of the “quality” of an
applicant. For example, it could be based on the average performance review score
after two years at the company. We’ll assume we have data from past candidates
that allows us to train a model to predict performance scores based on GPA and
interview score.

Obviously, this is a reductive formulation—we’re assuming that an applicant’s
worth can be reduced to a single number, and that we know how to measure that
number. This is a valid criticism, and applies to most applications of data-driven
decision-making today. But it has one big advantage: once we do formulate the
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Figure 4: Toy example: a hiring classifier that predicts job performance (not shown)
based on GPA and interview score, and then applies a cutoff.

decision as a prediction problem, statistical methods tend to do better than humans,
even domain experts with years of training, in making decisions based on noisy
predictors.

Given this formulation, the simplest thing we can do is to use linear regression
to predict the average job performance rating from the two observed variables, and
then use a cutoff based on the number of candidates we want to hire. The figure
above shows what this might look like. In reality, the variables under consideration
need not satisfy a linear relationship, thus suggesting the use of a non-linear model,
which we avoid for simplicity.

As you can see in the figure, our candidates fall into two demographic groups,
represented by triangles and squares. This binary categorization is a simplification
for the purposes of our thought experiment. But when building real systems,
enforcing rigid categories of people can be ethically questionable.

Note that the classifier didn’t take into account which group a candidate
belonged to. Does this mean that the classifier is fair? We might hope that it is,
based on the fairness-as-blindness idea, symbolized by the icon of Lady Justice
wearing a blindfold. In this view, an impartial model—one that doesn’t use the
group membership in the regression—is fair; a model that gives different scores to
otherwise-identical members of different groups is discriminatory.

We’ll defer a richer understanding of what fairness means to later chapters, so
let’s ask a simpler question: are candidates from the two groups equally likely
to be positively classified? The answer is no: the triangles are more likely to be
selected than the squares. That’s because data is a social mirror; the “ground truth”
labels that we’re predicting—job performance ratings—are systematically lower for
the squares than the triangles.

There are many possible reasons for this disparity. First, the managers who
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score the employees’ performance might discriminate against one group. Or
the overall workplace might be less welcoming one group, preventing them from
reaching their potential and leading to lower performance. Alternately, the disparity
might originate before the candidates were hired. For example, it might arise from
disparities in educational institutions attended by the two groups. Or there might
be intrinsic differences between them. Of course, it might be a combination of these
factors. We can’t tell from our data how much of the disparity is attributable to
these different factors. In general, such a determination is methodologically hard,
and requires causal reasoning.32

For now, let’s assume that we have evidence that the level of demographic
disparity produced by our selection procedure is unjustified, and we’re interested
in intervening to decrease it. How could we do it? We observe that GPA is
correlated with the demographic attribute—it’s a proxy. Perhaps we could simply
omit that variable as a predictor? Unfortunately, we’d also hobble the accuracy of
our model. In real datasets, most attributes tend to be proxies for demographic
variables, and dropping them may not be a reasonable option.

Another crude approach is to pick different cutoffs so that candidates from
both groups have the same probability of being hired. Or we could mitigate the
demographic disparity instead of eliminating it, by decreasing the difference in the
cutoffs.

Given the available data, there is no mathematically principled way to know
which cutoffs to pick. In some situations there is a legal baseline: for example,
guidelines from the U.S. Equal Employment Opportunity Commission state that
if the probability of selection for two groups differs by more than 20%, it might
constitute a sufficient disparate impact to initiate a lawsuit. But a disparate impact
alone is not illegal; the disparity needs to be unjustified or avoidable for courts to
find liability. Even these quantitative guidelines do not provide easy answers or
bright lines.

At any rate, the pick-different-thresholds approach to mitigating disparities
seems unsatisfying, because it is crude and uses the group attribute as the sole
criterion for redistribution. It does not account for the underlying reasons why
two candidates with the same observable attributes (except for group membership)
may be deserving of different treatment.

But there are other possible interventions, and we’ll discuss one. To motivate it,
let’s take a step back and ask why the company wants to decrease the demographic
disparity in hiring.

One answer is rooted in justice to individuals and the specific social groups to
which they belong. But a different answer comes from the firm’s selfish interests:
diverse teams work better.33, 34 From this perspective, increasing the diversity of
the cohort that is hired would benefit the firm and everyone in the cohort. As an
analogy, picking 11 goalkeepers, even if individually excellent, would make for a
poor soccer team.

How do we operationalize diversity in a selection task? If we had a distance
function between pairs of candidates, we could measure the average distance
between selected candidates. As a strawman, let’s say we use the Euclidean
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distance based on the GPA and interview score. If we incorporated such a diversity
criterion into the objective function, it would result in a model where the GPA is
weighted less. This technique doesn’t explicitly consider the group membership.
Rather, as a side-effect of insisting on diversity of the other observable attributes,
it also improves demographic diversity. However, a careless application of such
an intervention can easily go wrong: for example, the model might give weight to
attributes that are completely irrelevant to the task.

More generally, there are many possible algorithmic interventions beyond
picking different thresholds for different groups. In particular, the idea of a
similarity function between pairs of individuals is a powerful one, and we’ll see
other interventions that make use of it. But coming up with a suitable similarity
function in practice isn’t easy: it may not be clear which attributes are relevant,
how to weight them, and how to deal with correlations between attributes.

Justice beyond fair decision making

The core concern of this book is group disparities in decision making. But ethical
obligations don’t end with addressing those disparities. Fairly rendered decisions
under unfair circumstances may do little to improve people’s lives. In many cases,
we cannot achieve any reasonable notion of fairness through changes to decision-
making alone; we need to change the conditions under which these decisions are
made. In other cases, the very purpose of the system might be oppressive, and we
should ask whether it should be deployed at all.

Further, decision making systems aren’t the only places where machine learning
is used that can harm people: for example, online search and recommendation
algorithms are also of concern, even though they don’t make decisions about
people. Let’s briefly discuss these broader questions.

Interventions that target underlying inequities

Let’s return to the hiring example above. When using machine learning to make
predictions about how someone might fare in a specific workplace or occupation,
we tend to treat the environment that people will confront in these roles as a
constant and ask how people’s performance will vary according to their observable
characteristics. In other words, we treat the current state of the world as a given,
leaving us to select the person who will do best under these circumstances. This
approach risks overlooking more fundamental changes that we could make to the
workplace (culture, family friendly policies, on-the-job training) that might make it
a more welcoming and productive environment for people that have not flourished
under previous conditions.35

The tendency with work on fairness in machine learning is to ask whether
an employer is using a fair selection process, even though we might have the
opportunity to intervene in the workplace dynamics that actually account for
differences in predicted outcomes along the lines of race, gender, disability, and
other characteristics.36
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We can learn a lot from the so-called social model of disability, which views
a predicted difference in a disabled person’s ability to excel on the job as the
result of a lack of appropriate accommodations (an accessible workplace, necessary
equipment, flexible working arrangements) rather than any inherent capacity of
the person. A person is only disabled in the sense that we have not built physical
environments or adopted appropriate policies to ensure their equal participation.

The same might be true of people with other characteristics, and changes to
the selection process alone will not help us address the fundamental injustice of
conditions that keep certain people from contributing as effectively as others. We
examine these questions in Chapter 8.

It may not be ethical to deploy an automated decision-making system at all if
the underlying conditions are unjust and the automated system would only serve
to reify it. Or a system may be ill-conceived, and its intended purpose may be
unjust, even if it were to work flawlessly and perform equally well for everyone.
The question of which automated systems should be deployed shouldn’t be left to
the logic (and whims) of the marketplace. For example, we may want to regulate
the police’s access to facial recognition. Our civil rights—freedom or movement
and association—are threatened by these technologies both when they fail and
when they work well. These are concerns about the legitimacy of an automated
decision making system, and we explore them in Chapter 2.

The harms of information systems

When a defendant is unjustly detailed pre-trial, the harm is clear. But beyond algo-
rithmic decision making, information systems such as search and recommendation
algorithms can also have negative effects, but here the harm is indirect and harder
to define.

Here’s one example. Image search results for occupation terms such as CEO
or software developer reflect (and arguably exaggerate) the prevailing gender
composition and stereotypes about those occupations.37 Another example that we
encountered earlier is the gender stereotyping in online translation. These and other
examples that are disturbing to varying degrees—such as Google’s app labeling
photos of Black Americans as “gorillas”, or offensive results in autocomplete—seem
to fall into a different moral category than, say, a discriminatory system used in
criminal justice, which has immediate and tangible consequences.

A talk by Kate Crawford lays out the differences.38 When decision-making
systems in criminal justice, health care, etc. are discriminatory, they create allocative
harms, which are caused when a system withholds certain groups an opportunity or
a resource. In contrast, the other examples—stereotype perpetuation and cultural
denigration—are examples of representational harms, which occur when systems
reinforce the subordination of some groups along the lines of identity—race, class,
gender, etc.

Allocative harms have received much attention both because their effects are
immediate, and because they are easier to formalize and study in computer science
and in economics. Representational harms have long-term effects, and resist
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formal characterization. But as machine learning has become a part of how we
make sense of the world—through technologies such as search, translation, voice
assistants, and image labeling—representational harms will leave an imprint on our
culture, and influence identity formation and stereotype perpetuation. Thus, these
are critical concerns for the fields of natural language processing and computer
vision. Although this book is primarily about allocative harms, we will briefly
representational harms in Chapters 7 and 9.

The majority of content consumed online is mediated by recommendation
algorithms that influence which users see which content. Thus, these algorithms in-
fluence which messages are amplified. Social media algorithms have been blamed
for a litany of ills: echo chambers in which users are exposed to content that
conforms to their prior beliefs; exacerbating political polarization; radicalization
of some users into fringe beliefs; stoking ethnic resentment and violence; a deteri-
oration of mental health; and so on. Research on these questions is nascent and
establishing causality is hard, and it remains unclear how much of these effects are
due to the design of the algorithm versus user behavior. But there is little doubt that
algorithms have some role. Twitter experimentally compared a non-algorithmic
(reverse chronological) content feed to an algorithmic feed, and found that content
from the mainstream political right was consistently favored in the algorithmic
setting than content from the mainstream political left.39 While important, this
topic is out of scope for us. However, we briefly touch on discrimination in ad
targeting and in online marketplaces in Chapter 7.

Our outlook: limitations and opportunities

We’ve seen how machine learning propagates inequalities in the state of the world
through the stages of measurement, learning, action, and feedback. Machine
learning systems that affect people are best thought of as closed loops, since the
actions we take based on predictions in turn affect the state of the world. One
major goal of fair machine learning is to develop an understanding of when these
disparities are harmful, unjustified, or otherwise unacceptable, and to develop
interventions to mitigate such disparities.

There are fundamental challenges and limitations to this goal. Unbiased mea-
surement might be infeasible even in principle, such as when the construct itself
(e.g. race) is unstable. There are additional practical limitations arising from the fact
that the decision maker is typically not involved in the measurement stage. Further,
observational data can be insufficient to identify the causes of disparities, which
is needed in the design of meaningful interventions and in order to understand
the effects of intervention. Most attempts to “debias” machine learning in the
current research literature assume simplistic mathematical systems, often ignoring
the effect of algorithmic interventions on individuals and on the long-term state of
society.

Despite these important limitations, there are reasons to be cautiously optimistic
about fairness and machine learning. First, data-driven decision-making has
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the potential to be more transparent compared to human decision-making. It
forces us to articulate our decision-making objectives and enables us to clearly
understand the tradeoffs between desiderata. However, there are challenges to
overcome to achieve this potential for transparency. One challenge is improving the
interpretability and explainability of modern machine learning methods, which is
a topic of vigorous ongoing research. Another challenge is the proprietary nature
of datasets and systems that are crucial to an informed public debate on this topic.
Many commentators have called for a change in the status quo.40

Second, effective interventions do exist in many machine learning applications,
especially in natural-language processing and computer vision. Tasks in these
domains (say, transcribing speech) are subject to less inherent uncertainty than
traditional decision-making (say, predicting if a loan applicant will repay), removing
some of the statistical constraints that we’ll study in Chapter 3.

Our final and most important reason for optimism is that the turn to automated
decision-making and machine learning offers an opportunity to reconnect with the
moral foundations of fairness. Algorithms force us to be explicit about what we
want to achieve with decision-making. And it’s far more difficult to paper over our
poorly specified or true intentions when we have to state these objectives formally.
In this way, machine learning has the potential to help us debate the fairness of
different policies and decision-making procedures more effectively.

We should not expect work on fairness in machine learning to deliver easy
answers. And we should be suspicious of efforts that treat fairness as something
that can be reduced to an algorithmic stamp of approval. We must try to confront,
not avoid, the hard questions when it comes to debating and defining fairness.
We may even need to reevaluate the meaningfulness and enforceability of existing
approaches to discrimination in law and policy,9 expanding the tools at our disposal
to reason about fairness and seek out justice.

We hope that this book can play a small role in stimulating this interdisciplinary
inquiry.

Bibliographic notes and further reading

This chapter draws from several taxonomies of biases in machine learning and
data-driven decision-making: a blog post by Moritz Hardt,25 a paper by Barocas
and Selbst,9 and a 2016 report by the White House Office of Science and Technology
Policy.41 For a broad survey of challenges raised by AI, machine learning, and
algorithmic systems, see the AI Now report.42

An early work that investigated fairness in algorithmic systems is by Friedman
and Nissenbaum in 1996.43 Papers studying demographic disparities in classifica-
tion began appearing regularly starting in 2008;44 the locus of this research was in
Europe, and in the data mining research community. With the establishment of the
FAT/ML workshop in 2014, a new community emerged, and the topic has since
grown in popularity. Several popular-audience books have delivered critiques of
algorithmic systems in modern society: The Black Box Society by Frank Pasquale,45
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Weapons of Math Destruction by Cathy O’Neill,46 Automating inequality by Virginia
Eubanks,47 and Algorithms of Oppression by Safiya Noble.48
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